
Encode & Decode: Generalizing Deep Knowledge Tracing
and Multidimensional Item Response Theory

ABSTRACT
Knowledge tracing consists in predicting the performance of
some students on new questions given their performance on
previous questions, and can be a prior step to optimizing
assessment and learning. Deep knowledge tracing (DKT)
is a competitive model for knowledge tracing relying on re-
current neural networks, even if some simpler models may
match its performance. However, little is known about why
DKT works so well. In this paper, we frame deep knowl-
edge tracing as a encoder-decoder architecture, which leads
us to propose better models and promising future research
directions. In particular, we show on several small and large
datasets that a simpler decoder than the one used by DKT
can predict student performance better.

Keywords
knowledge tracing, side information, item response theory

1. INTRODUCTION
Adaptive testing and personalized learning are precious tech-
nologies that have been enabled by tracing the knowledge of
previous students. They rely on a response model of the
learners: if we know how people learned in the past, we
can optimize testing or learning for new students. This is
the model-based approach of reinforcement learning, com-
monly referred to as knowledge tracing in the educational
data mining literature.

Formally, knowledge tracing relies in predicting the out-
comes of new students on some items, given the performance
of various former students on these items. Numerous mod-
els have been proposed for knowledge tracing such as deep
knowledge tracing (DKT) that relies on a recurrent neu-
ral network (RNN) [9]. However, Wilson et al. [13] have
matched the performance of DKT with a unidimensional
item response theory (IRT) model that can be seen as on-
line logistic regression. In order to advance the field, we
need to understand what distinguishes these models, and

how to build upon them. For example, we can notice that
the data to which these models had access was not exactly
the same. IRT usually learns a difficulty parameter per
item while DKT were initially strictly used on skill data for
the sake of the comparison with Bayesian knowledge tracing
(BKT).

In this paper, we show how we can bridge both categories
of models using an encoder-decoder architecture. These ar-
chitectures are usually encountered in sequence-to-sequence
scenarios such as machine translation [1]. We open the black
box of DKT and see how it relates to existing, well known
models. This will lead us to provide suggestions of models
according to the size of the dataset.

Our main contribution is an encoder-decoder architecture
that take DKT, IRT and other models such as Performance
Factor Analysis (PFA) as special cases. We show that it is
better to learn unidimensional parameters for the decoder,
which is not what the vanilla DKT model does. We finally
demonstrate that RNNs can also provide excellent results
even on small datasets.

We first expose related work, then our approach: encode &
decode. We subsequently detail our datasets, experiments,
and see the influence of specific components of our architec-
ture in the results.

2. BACKGROUND AND RELATED WORK
Formally, knowledge tracing can be defined as follows. Let
us denote I the set of items of some test. For each student,
at each time step T , we know the sequence of items and
outcomes already given to the student (qt, at)1≤t<T where
qt ∈ I and at ∈ {0, 1}, as well as some potential side infor-
mation such as the knowledge components (KCs) required
by qt and denoted by KC(qt) ∈ {0, 1}K . Using this infor-
mation, we need to predict at. We will note σ the sigmoid
function : σ : x 7→ 1/(1 + exp(−x)) and logit the inverse
function of σ. We now describe some models for knowledge
tracing.

MIRT. In item response theory, we usually do not assume
that the examinee’s ability evolves over time. The probabil-
ity that user i correctly answers item j is:

logitPr(user i answers correctly item j) = 〈ui,vj〉+ δj

where ui ∈ Rd is a learned representation of user i, vj is a
learned representation of item j and δj is a bias parameter

representing the easiness of item j. This model is popu-
lar in the psychometric literature, because it can allow live
adaptation of the assessment, given the performance of the
student.

DKT. Deep knowledge tracing is usually described as a
black-box model that takes into input pairs (qt, at)1≤t<T

from some student, and outputs a vector of probabilities y
such that yk is the probability that the student will answer
correctly an item requiring skill k. More precisely, in a DKT
model, the actual probability that user i correctly answers
an item that requires skill k at time t (event Rikt = 1) is
given by:

logitPr(Rikt = 1) = 〈ht, sk〉

where sk is a representation of the skill learned by DKT that
does not evolve over time and ht = LSTM(ht−1, qt, at) is
a representation of the user that evolves over time. Variants
of DKT have been proposed [6]. In [7], Montero et al. show
that DKT can trace knowledge efficiently even when skills
are interleaved, and that it shares information between skills.

We can already notice how similar DKT and MIRT com-
pute the logit of the probability of a correct outcome from
the student. But using skill representation or item represen-
tation should not be mutually exclusive, as shown with the
following model.

KTM In [11], Vie and Kashima have shown that it is pos-
sible to learn representations for all users, items, skills in
a test and combine them in a pairwise manner. Interest-
ingly, most existing models for knowledge tracing such as
IRT, PFA, MIRT are special cases of KTMs, according to
the representations considered in the modeling. We note x
(called metadata in this article) the encoding of the features
of an event, for example: “user i answers correctly item j
that requires skills k1 and k2” may be encoded by the con-
catenation of a one-hot vector for user i, another one-hot
vector for item j, and a 2-hot vector for skills k1 and k2.
KTM learn a bias wk ∈ R and an embedding vk ∈ Rd for
each feature k.

logitPr(x) = 〈w,x〉+
∑
i<j

xixj〈vi,vj〉.

3. OUR APPROACH: ENCODE & DECODE
We see all these models through the same lens: our archi-
tecture relies on two main components, an encoder E and
a decoder D that are trained jointly. They respectively re-
quire an expression of the metadata of former actions from
the student xint and metadata of assessment at time t: xoutt .{

ht = E(ht−1,x
in
t)

pt = D(ht,x
out
t)

t = 1, . . . , T

and h0 = 0. In this expression, ht represents the learned
representation of the user at time t, and pt the probability
that the attempt of the student at time t will be correct.
Please note that this modeling is rich enough to encompass
broader tasks than knowledge tracing, for example we can
model the event that user u watched the video of some les-
son, with the corresponding metadata. If we can take ad-
vantage of this kind of data, we can hopefully recommend
new videos to some student to optimize their learning.

3.1 Encode: learn representations that evolve
over time

The representation of the student at time t is given by ht =
E(ht−1,x

in
t). Let us see different examples of encoders.

3.1.1 Constant, or maximum likelihood estimation
In MIRT, the ability of student i does not evolve over time:
EMIRT = ui which is learned. In [13], when Wilson et
al. compare the performance of DKT to IRT, at test time
they dynamically estimate the most likely user ability ac-
cording to the previous student outcomes, and the learned
item parameters. Maximum likelihood estimation (MLE) is
possible with simple models such as IRT, but for more com-
plex architectures or priors, it is not always feasible because
it increases the time complexity during the test phase.

3.1.2 Counters
The famous model and hard baseline Performance Factor
Analysis (PFA) [8] can also be encoded as our approach. Let
us consider the binary vectorsKC(qt) and xoutt = KC(qt+1)
that are the corresponding rows of items qt and qt+1 in a q-
matrix. We note xint = (atKC(qt), (1− at)KC(qt)), where
(·, ·) denotes concatenation. The first K components of xint
are 0 if the response was incorrect and the last K compo-
nents of xint are 0 if the response was correct. The estimated
ability of the student over time is a linear function of their
number of previous successful and unsuccessful attempts:

EPFA : ht = ht−1 + (atKC(qt), (1− at)KC(qt))︸ ︷︷ ︸
xin
t

DPFA : pt = σ(〈ht,w,xoutt 〉+ 〈xoutt ,β〉)

where 〈a, b, c〉 =
∑

k akbkck.

In other words, ht = (Wi1, . . . ,WiK , Fi1, . . . , FiK) where
Wik (Fik) is the number of previous successes (failures) of
student i over skill k: Wik =

∑
t:k∈KC(qt)

at.

3.1.3 Recurrent neural networks (RNN)
In DKT, the ability of the student is a function of their
previous actions, i.e., pairs (item qt, outcome at):

EDKT : ht = RNN(ht−1, qt, at).

In their original paper, Piech et al. [9] assume that each
item is only related to one skill among 1, . . . ,K. They learn
a joint representation xint ∈ {0, 1}2K for the pair (st, at)
where st = KC(qt), because they claim that separate repre-
sentations for st and at degraded performance. When there
are too many pairs of (qt, at), they use fixed low-dimensional
representations instead of {0, 1}2K , inspired by compressed
sensing. It makes sense to use skill in lieu of items for encod-
ing the actions of the student, in order to have redundancy
and avoid the item cold-start problem.

In DKT-DSC, an extension of DKT, Minn et al. [6] use an
encoding of the triplet (qt, at, ct) as metadata xint where ct
is a dynamic clustering information of the student based on
their vector (Wi1 − Fi1, . . . ,WiK − FiK) updated at each
time step. They managed to outperform DKT on several
datasets.

3.1.4 Linear projection component
The encoder may need multidimensional parameters to en-
code learning dynamics, for example if it is a RNN. But in
practice, most hard baselines for knowledge tracing such as
PFA only model skill parameters with one dimension. So
we also introduce a scalar h′t = 〈w,ht〉 + b which is a pro-
jection of the multidimensional latent state of the student
after a linear layer (w and b are learned). This term can be
interpreted as some unidimensional ability of the student at
time t.

3.2 Decode: combine learned representations
to predict

The objective of the decoder is to combine the learned repre-
sentation ht of the student at time t with some parameters
involved in the assessment at time t such as item, skill, or
some side information such as country, device used, whether
the test was pretest, posttest, or practice. Generally, the
decoder learns biases w and embeddings V for all features
involved in the outcome of item qt except the user. The
metadata xoutt can be seen as a mask to specify which bi-
ases or embeddings should contribute to the logit of proba-
bility pt. Many examples of metadata can be seen in [11].
In order to make predictions and generalize to unseen user-
item pairs, we use the learned representations to infer the
outcomes. pt = D(ht,x

out
t).

3.2.1 Multidimensional decoder
For example, MIRT computes a simple dot product of the
user representation and the item representation, plus a bias
representing the easiness of the item. So we can fix xoutt as
a one-hot vector representing the item qt+1 and:

DMIRT : pt = σ(〈ht,vqt+1
〉+ wqt+1)

= σ(〈ht,xoutt V 〉+ 〈xoutt ,w〉).

DKT computes a dot product of the user representation (la-
tent state) and the skill representation. In other words, xoutt

is a one-vector representing skill k.

DDKT : pt = σ(〈ht, sk〉)
= σ(〈ht,xoutt V 〉+ 〈xoutt ,w〉).

Please note that the expression of DDKT and DMIRT are
the same: only xoutt is different.

3.2.2 Biases
The decoder does not necessarily use embeddings V to com-
pute the predictions. A vector of biases w can be enough,
as we will see now.

In PFA, pt depends on a weighted sum of the counters ht,
according to the knowledge components that are assessed at
time t and specified in xoutt = KC(qt+1):

logit pt =
∑

k∈KC(qt+1)

γkWik + δkFik

︸ ︷︷ ︸
〈ht,w,xout

t 〉

+
∑

k∈KC(qt+1)

βk

︸ ︷︷ ︸
〈xout

t ,β〉

.

Parametersw = (γ, δ) and β are learned, respectively biases
for wins, fails and skills. Please note that this formulation

inspires us to provide models handling multiple skills. We
will denote this kind of encoder as “swf” in the experiments.

We can now see that it is easy to derive more complex de-
coders by specifying a set of metadata in output xoutt , in a
similar way to KTM. For example, weights can be learned
for the item qt+1 as well, and added to the logit during de-
coding.

3.3 Training and Testing
We optimize the log-loss, also known as mean negative log-
likelikood:

L(a, p) =

T∑
t=1

log(1− |at − pt|).

This log-loss can be computed for a batch of students, but
we have to care about the fact that all students did not
attempt the same number of items.

Once the parameters of the encoder E and the decoder D
have been trained, for a new student it is easy to unroll the
encoder on the sequence of outcomes (qt, at) encoded as xint ,
get the corresponding latent states ht, and feed them to the
decoder with the metadata xoutt to get the predictions, and
compute performance metrics.

4. EXPERIMENTS
We report all results according to their accuracy (ACC) and
area under the curve (AUC).

4.1 Models
We tried different combinations of encoders and decoders.
We excluded MIRT from the baselines because it is not
evolving over time.

4.1.1 Encoders
• RNN of latent dimensionality d where the encoding of

actions (st, at) is sampled from a Gaussian multivari-
ate distribution of dimension d and fixed. We used
GRU (Gated Recurrent Unit) because it has fewer pa-
rameters than LSTM (Long Short-Term Memory), so
it is less prone to overfitting [?].

• counter: like PFA described above.

• no encoder: there is no latent state learned for the stu-
dent. Predictions only rely on xoutt and some learned
biases and/or embeddings.

4.1.2 Decoders
• multidimensional skills: like in DKT, where embed-

dings sk are learned for each skill k = 1, . . . ,K for
decoding the latent state ht of the student. We will
refer to it in the experiments as d, and “s” as xoutt .

• bias swf: learning biases for skills, wins, fails, like in
PFA.

• bias iswf: learning biases for items, skills, wins, fails,
like in KTM.

• no decoder: there is no metadata of the test.

Model Encoder Decoder xout ACC AUC

Ours GRU d = 2 bias iswf 0.880 0.944
Ours GRU d = 2 bias iswf 0.862 0.929
KTM counter bias iswf 0.853 0.918
PFA counter bias swf 0.854 0.917
Ours ∅ bias iswf 0.849 0.917
Ours GRU d = 50 ∅ 0.814 0.880
DKT GRU d = 2 d = 2 s 0.772 0.844
Ours GRU d = 2 ∅ 0.751 0.800

Table 1: Results on the Fraction dataset. The top
model was trained during 400 epochs.

For the last three cases, as no multidimensional embedding
is learned on the decoder side, predictions rely on h′t the
linear projection of ht as described in Section 3.1.4. For the
last case, the prediction pt = σ(h′t) and no bias is added to
the logit, because there is no decoder.

4.1.3 Corresponding baselines
DKT has a RNN as encoder and multidimensional parame-
ters within its decoder.

PFA and KTM use as encoder a simple counter of successful
and unsuccessful attempts from the student. What distin-
guishes them is that PFA only models unidimensional pa-
rameters (biases) for skill, wins, fails and KTM also consid-
ers a bias for item. In all our experiments we did not consider
pairwise interactions between embeddings for KTM. So PFA
and KTM here are particular cases of logistic regression.

4.2 Datasets
We tried our approach on the following datasets that have
diverse characteristics.

Fraction 536 middle-school students attempting 20 frac-
tion subtraction exercises requiring 8 KCs such as, be-
ing able to put fractions at the same denominator. All
students attempted all items, so this dataset is fully
specified. The dataset and description of KCs can be
seen in [2]. This dataset is particularly interesting be-
cause it is small scale, so complex models may overfit.

Assistments 2009 346860 attempts of 4217 students over
26688 math-related items requiring 123 KCs [3]. Some
of the items require multiple KCs, up to 4. Students
attempted between 1 and 1382 exercises.

Berkeley 562201 attempts of 1730 students over 234 CS-
related items in a MOOC provided by Berkeley. Items
can be of 29 categories, that we used as KCs. Each
item belong to a single category. Students attempted
between 2 and 1020 exercises.

4.3 Preparing the data
We would love to make the reader believe that combining
these models is easy, but in practice there are many chal-
lenges, fortunately already known in the natural language
processing community.

Model Encoder Decoder xout ACC AUC

KTM counter bias iswf 0.714 0.748
Ours GRU d = 50 bias iswf 0.711 0.726
Ours GRU d = 100 ∅ 0.702 0.704
DKT GRU d = 50 d = 50 s 0.691 0.701
Ours ∅ bias iswf 0.681 0.691
PFA counter bias swf 0.682 0.686
DKT GRU d = 2 d = 2 s 0.531 0.511

Table 2: Results on the Assistments dataset.

Batching Whenever there are too many data points, in or-
der to save memory we need to sample a batch of users.
So the log-loss is computed on a batch.

Sequences of uneven lengths Within a batch, different
users may have attempted a different number of ques-
tions. However to take advantage of parallel matrix
computations, it is better to compute the log-loss over
matrices. So we use a mask to know where the se-
quences end for each student.

Sequences of long lengths On long sequences, DKT is
hard to train. First, it may forget information on a
long sequence, second the computation of the gradi-
ent may take time, vanish to zero or conversely get
arbitrary high. As a remedy, we train on windows of
fixed size called BPTT parameter: backpropagating
through time [12]. The latent state of the previous
batch is fed to the next batch.

We used 5-fold cross-validation: we split each dataset into
5 folds, predict any of them using the remaining ones, and
average the results.

4.4 Implementation
We optimize our model using Adam [4] with learning rate
γ = 0.005 and weight decay λ = 0.0005 (equivalent to `2
regularization). We train using 100 minibatches and use
time windows of size 100. For the RNN, we used GRU with
one layer, no dropout and latent dimensionality 2, 50 or 100.
Our implementation in PyTorch will be available on GitHub
after your review. We ran the Fraction dataset experiments
on CPU and the Assistments and Berkeley dataset experi-
ments on GPU. Training was stopped after 200 epochs, ex-
cept for the Fraction dataset where for one of the models
(see Table 1), we stopped the training after 400 epochs.

5. RESULTS AND DISCUSSION
Results are shown in Tables 1 to 3.

In all datasets, our method outperformed the vanilla DKT
model. More precisely, any model with a multidimensional
decoder is outperformed by a model with a unidimensional
decoder. Even completely removing the decoder out of DKT
can improve the prediction performance, which means the
encoder is expressive enough to track the knowledge of the
student.

Removing the encoder is equivalent to a KTM, which is the
case on all datasets except Assistments, where we conjecture

Model Encoder Decoder xout ACC AUC

Ours GRU d = 50 bias iswf 0.707 0.778
KTM counter bias iswf 0.704 0.775
Ours ∅ bias iswf 0.700 0.770
DKT GRU d = 50 d = 50 s 0.684 0.751
Ours GRU d = 100 ∅ 0.682 0.750
PFA counter bias swf 0.630 0.683
DKT GRU d = 2 d = 2 s 0.637 0.656

Table 3: Results on the Berkeley dataset.

that as there are many items, we might suffer from the item
cold-start problem by assuming an item bias. Also, our ini-
tialization of the biases is different from KTM, which may
explain the discrepancy on this dataset.

On the large datasets Assistments and Berkeley, KTM, that
uses a simple counter of successful and unsuccessful attempts
at skill level as encoder, is among the top models. It seems
to indicate that when the information is abundant, logistic
regression may be enough, because the number of successes
and failures is good enough as predictor. It also means that
we do not need to train a deep neural network. What is
even more surprising, is that on the small dataset Fraction,
the top performing model uses a recurrent neural network as
encoder. It may be because the sequences are small: every
student only attempts 20 items. So the counter of successes
are low and the sequences are small enough to be considered
by the RNN.

Considering an item bias does not improve a lot the quality
of the predictions on the Fraction dataset, maybe because
the fraction subtraction task is particularly easy to describe
using KCs, so the KCs are enough to characterize the items.
However, on Assistments, one can see the improvement when
considering an item bias, see the difference between PFA and
KTM (0.06 AUC). Same goes for Berkeley, where the KCs
are actually mere categories of items.

6. CONCLUSION
Most models in the educational data mining literature have
been presented as modeling both users and items (or skills)
with multidimensional parameters. In this study though,
we showed that while it is indeed important to model the
dynamics of the students with multidimensional parameters,
the items do not necessarily need to be multidimensional to
come up with really strong models. In particular, KTM in
its logistic regression form is among the top models. This
is encouraging because we come up with better models that
have fewer parameters.

As future work, we plan to try to use other kinds of side
information. For example, for the Duolingo dataset [10],
contestants had to predict whether a learner would get a
word correct, and the best approaches were combinations
of DKT with word embeddings [5]; using the content of the
word (such as bigram features) allow to learn what phonemes
are harder for which categories of people. Also we will try
to encode richer actions for the encoder, because devising
q-matrices is costly for humans, and the RNN may be able
to recover the q-matrix without supervision.

7. REFERENCES
[1] K. Cho, B. Van Merriënboer, C. Gulcehre,

D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078, 2014.

[2] L. T. DeCarlo. On the analysis of fraction
subtraction data: The DINA model, classification,
latent class sizes, and the Q-matrix. Applied
Psychological Measurement, 2010.

[3] M. Feng, N. Heffernan, and K. Koedinger.
Addressing the assessment challenge with an online
system that tutors as it assesses. User Modeling and
User-Adapted Interaction, 19(3):243–266, 2009.

[4] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. In Proceedings of the 3rd
International Conference on Learning
Representations (ICLR), 2014.

[5] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,
and J. Dean. Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages
3111–3119, 2013.

[6] S. Minn, Y. Yu, M. C. Desmarais, F. Zhu, and J.-J.
Vie. Deep knowledge tracing and dynamic student
classification for knowledge tracing. In 2018 IEEE
International Conference on Data Mining (ICDM),
pages 1182–1187. IEEE, 2018.

[7] S. Montero, A. Arora, S. Kelly, B. Milne, and
M. Mozer. Does deep knowledge tracing model
interactions among skills? In Proceedings of the
Eleventh International Conference on Educational
Data Mining. Educational Data Mining Society
Press, 2018.

[8] P. I. Pavlik, H. Cen, and K. R. Koedinger.
Performance factors analysis–a new alternative to
knowledge tracing. In Proceedings of the 2009
conference on Artificial Intelligence in Education:
Building Learning Systems that Care: From
Knowledge Representation to Affective Modelling,
pages 531–538. IOS Press, 2009.

[9] C. Piech, J. Bassen, J. Huang, S. Ganguli,
M. Sahami, L. J. Guibas, and J. Sohl-Dickstein.
Deep knowledge tracing. In Advances in Neural
Information Processing Systems (NIPS), pages
505–513, 2015.

[10] B. Settles, C. Brust, E. Gustafson, M. Hagiwara, and
N. Madnani. Second language acquisition modeling.
In Proceedings of the Thirteenth Workshop on
Innovative Use of NLP for Building Educational
Applications, pages 56–65, 2018.

[11] J.-J. Vie and H. Kashima. Knowledge Tracing
Machines: Factorization Machines for Knowledge
Tracing. Proceedings of the 33th AAAI Conference
on Artificial Intelligence, 2019.

[12] P. J. Werbos et al. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

[13] K. H. Wilson, Y. Karklin, B. Han, and
C. Ekanadham. Back to the basics: Bayesian
extensions of IRT outperform neural networks for
proficiency estimation. In Proceedings of the 9th
International Conference on Educational Data
Mining (EDM), pages 539–544, 2016.

