Knowledge Tracing	user2bias	user2vec	Conclusion

Knowledge Tracing: Predicting & Optimizing Human Learning

Jill-Jênn Vie Hisashi Kashima

AIP-IITH workshop, March 15, 2019

Knowledge Tracing	user2bias	user2vec	Conclusion
●00000	0000000	000000000	0000
Topics			

- Modeling learning over time
- Combining representations (users & items)
 - Dimension 1 user2bias
 - Dimension *n* user2vec

- Adaptive strategies for testing & optimizing human learning
 - If we can understand how human learns
 - We can learn a policy to teach better

Knowledge Tracing	user2bias	user2vec	Conclusion
0●0000	0000000	0000000000	0000
Related application	ations		

Crowdsourcing

Data: worker i labels item j with class kWhat is the true label of all items?

Mixture of experts, ensemble methods

Modeling which algorithm suits which features

Machine teaching

Feed the best sequence of samples to train a known algorithm

Knowledge Tracing 00●000	user2bias 0000000	user2vec 000000000	Conclusion
Practical intro			

When exercises are too easy (or difficult), students get bored (or discouraged).

To personalize assessment,

 \rightarrow need a model of how people respond to exercises.

 Knowledge Tracing cococo
 user2bias cocococo
 user2vec cocococo
 ???
 Conclusion cococo

 Students true oversises

Students try exercises

Math Learning

-	ltems		5 - 5 = ?		17 – 3 = ?		13 – 7 = ?		
-	New student		0		0		×		
Langua	age Lea	rning							
	PRON	VERB	PRON	NOUN	CONJ	PRON	VERB	PRON	NOUN
correct:	She	is	my	mother	and	he	is	my	father
student:	she	is		mader	and	he	is		fhader
label:	0	0	×	×	0	0	0	×	×

Challenges

- Users can attempt a same item multiple times
- Users learn over time
- People can make mistakes that do not reflect their knowledge

 Knowledge Tracing 000000
 user2bias 0000000
 user2vec 00000000
 ??? 0000000
 Conclusion 000000

 Predicting student performance: knowledge tracing

Data

A population of users answering items

• Events: "User *i* answered item *j* correctly/incorrectly"

Side information

- If we know the skills required to solve each item $e.g., +, \times$
- Device used by the student, etc.

Goal: classification problem

Predict the performance of new users on existing items Metric: AUC

Method

Learn parameters of questions from historical datae.g., difficultyMeasure parameters of new studentse.g., expertise

Our small d	ataset			
Knowledge Tracing	user2bias	user2vec	???	Conclusion
000000	●000000	000000000	000000	

		user	item	correct
•	User 1 answered Item 1 correct	1	1	1
٩	User 1 answered Item 2 incorrect	1	2	0
٩	User 2 answered Item 1 incorrect	2	1	0 1
•	User 2 answered Item 1 correct	2	2	???
-				

dummy.csv

Knowledge Tracing	user2bias 000000	user2vec 000000000	Conclusion 0000
Our approach			

• Encode data to sparse features

					, KTM ,												
					PFA												
				<u> </u>		IRT		>	,								
				Us	ers		Items			Skills			Wins			Fails	
user	item	correct		1	2	Q_1	Q_2	Q_3	KC1	KC_2	KC ₃	KC1	KC_2	KC ₃	KC1	KC_2	KC ₃
2	2	1		0	1	٥	1	٥	1	1	0	0	0	٥	0	0	0
2	2	0		~	-	~	-	~	1	-	0	-		0	0	0	0
2	2	0	encode	0	1	0	1	0	1	1	0	1	1	0	0	0	0
2	3	0	,	0	1	0	1	0	1	1	0	1	1	0	1	1	0
2	3	1		0	1	0	0	1	0	1	1	0	2	0	0	1	0
1	2	777		0	1	0	0	1	0	1	1	0	2	0	0	2	1
1	1	777		1	0	0	1	0	1	1	0	0	0	0	0	0	0
	-			1	0	1	0	0	0	0	0	0	0	0	0	0	0
da	ata.	CSV							spa	arse	ma	atrix	X				

Run logistic regression or factorization machines
 ⇒ recover existing models or better models

Learn abilities θ_i for each user *i* Learn easiness e_i for each item *j* such that:

 $Pr(\text{User } i \text{ Item } j \text{ OK}) = \sigma(\theta_i + e_j) \quad \sigma : x \mapsto 1/(1 + \exp(-x))$ logit $Pr(\text{User } i \text{ Item } j \text{ OK}) = \theta_i + e_j$

Really popular model, used for the PISA assessment

Can be encoded as logistic regression

Learn **w** such that logit $Pr(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b$

 Knowledge Tracing 000000
 user2bias 0000000
 user2vec 00000000
 ???
 Conclusion 00000

 Current Lice Ubus
 IDT
 conclusion
 00000000
 000000

Graphically: IRT as logistic regression

Encoding "User *i* answered Item *j*" with sparse features:

$$\langle \boldsymbol{w}, \boldsymbol{x} \rangle = \theta_i + e_j = \text{logit } Pr(\text{User } i \text{ Item } j \text{ OK})$$

Knowledge Tracing 000000	user2bias 0000000	user2vec 0000000000	Conclusion
Oh there's a	problem		

	Users			I	tem	S		
	U_0	U_1	U_2	<i>I</i> ₀	<i>I</i> ₁	I_2	y pred	y
User 1 Item 1 OK	0	1	0	0	1	0	0.575135	1
User 1 Item 2 NOK	0	1	0	0	0	1	0.395036	0
User 2 Item 1 NOK	0	0	1	0	1	0	0.545417	0
User 2 Item 1 <mark>OK</mark>	0	0	1	0	1	0	0.545417	1
User 2 Item 2 NOK	0	0	1	0	0	1	0.366595	0

We predict the same thing when there are several attempts.

346860 attempts of 4217 students over 26688 items on 123 skills.

model	dim	AUC	improvement
KTM: items, skills, wins, fails	0	0.746	+0.06
IRT: users, items	0	0.691	
PFA: skills, wins, fails	0	0.685	+0.07
AFM: skills, attempts	0	0.616	

000000	0000000	000000000	000000	0000

Here comes a new challenger

How to model pairwise interactions with side information?

Logistic Regression

Learn a 1-dim bias for each feature (each user, item, etc.)

Factorization Machines

Learn a 1-dim bias and a k-dim embedding for each feature

Knowledge Tracinguser2biasuser2vec???Conclusion00000000000000000000000000000000000000How to model pairwise interactions with side information?

If you know user *i* attempted item *j* on mobile (not desktop) How to model it?

y: score of event "user i solves correctly item j"

IRT

$$y = \theta_i + e_j$$

Multidimensional IRT (similar to collaborative filtering)

$$y = heta_i + e_j + \langle \mathbf{v}_{\mathsf{user}} \; \mathbf{i}, \, \mathbf{v}_{\mathsf{item}} \; \mathbf{j}
angle$$

With side information

 $y = \theta_i + e_j + w_{\text{mobile}} + \langle \mathbf{v}_{\text{user } i}, \mathbf{v}_{\text{item } j} \rangle + \langle \mathbf{v}_{\text{user } i}, \mathbf{v}_{\text{mobile}} \rangle + \langle \mathbf{v}_{\text{item } j}, \mathbf{v}_{\text{mobile}} \rangle$

Knowledge Tracing 000000	user2bias 0000000	user2vec 000000000	Conclusion
<u> </u>		<u>.</u>	

Graphically: logistic regression

Knowledg 000000		user2bia	is 00	user2vec 0000000000	Conclusion 0000
-					

Graphically: factorization machines

 Knowledge Tracing
 user2bias
 user2vec
 ???
 Conclusion

 000000
 0000000
 0000000
 000000
 00000

Formally: factorization machines

Each user, item, skill k is modeled by bias w_k and embedding v_k .

$$\operatorname{logit} p(\mathbf{x}) = \mu + \underbrace{\sum_{k=1}^{N} w_{k} x_{k}}_{\operatorname{logistic regression}} + \underbrace{\sum_{1 \leq k < l \leq N} x_{k} x_{l} \langle \mathbf{v}_{k}, \mathbf{v}_{l} \rangle}_{\operatorname{pairwise relationships}}$$
$$= \mu + \langle \mathbf{w}, \mathbf{x} \rangle + \frac{1}{2} \left(||V\mathbf{x}||^{2} - \mathbb{1}^{T} (V \circ V) (\mathbf{x} \circ \mathbf{x}) \right)$$

Steffen Rendle (2012). "Factorization Machines with libFM". In: ACM Transactions on Intelligent Systems and Technology (TIST) 3.3, 57:1–57:22. DOI: 10.1145/2168752.2168771
 Knowledge Tracing 000000
 user2bias 000000
 user2vec 000000
 ??? 000000
 Conclusion 00000

 Training using MCMC

Priors: $w_k \sim \mathcal{N}(\mu_0, 1/\lambda_0) \quad \mathbf{v}_k \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$ Hyperpriors: $\mu_0, \ldots, \mu_n \sim \mathcal{N}(0, 1), \lambda_0, \ldots, \lambda_n \sim \Gamma(1, 1) = U(0, 1)$

Algorithm 1 MCMC implementation of FMs

for each iteration do Sample hyperp. $(\lambda_i, \mu_i)_i$ from posterior using Gibbs sampling Sample weights \boldsymbol{w} Sample vectors \boldsymbol{V} Sample predictions \boldsymbol{y} end for

Implementation in C++ (libFM) with Python wrapper (pyWFM).

Steffen Rendle (2012). "Factorization Machines with libFM". In: ACM Transactions on Intelligent Systems and Technology (TIST) 3.3, 57:1–57:22. DOI: 10.1145/2168752.2168771

Knowledge Tracing	user2bias 0000000	user2vec oooooooooo	Conclusion 0000
Datasets			

Fraction

500 middle-school students, 20 fraction subtraction questions, 8 skills (full matrix)

Assistments

346860 attempts of 4217 students over 26688 math items on 123 skills (sparsity 0.997)

Berkeley

On a MOOC of Computer Science, 562201 attempts of 1730 students over 234 items of 29 categories

Knowledge Tracing	user2bias	user2vec	Conclusion
000000	0000000	0000000000	0000
- · · · ·	A		

Existing work on Assistments

Model	Basically	Original AUC	Fixed AUC
Bayesian Knowledge Tracing (Corbett and Anderson 1994)	Hidden Markov Model	0.67	0.63
Deep Knowledge Tracing (Piech et al. 2015)	Recurrent Neural Network	0.86	0.75
ltem Response Theory (Rasch 1960) (Wilson et al., 2016)	Online Logistic Regression		0.76
Knowledge Tracing Machines	Factorization Machines		0.82

Jill-Jênn Vie and Hisashi Kashima (2019). "Knowledge Tracing Machines: Factorization Machines for Knowledge Tracing". In: *33th AAAI Conference on Artificial Intelligence*. URL: http://arxiv.org/abs/1811.03388

AUC results on the Assistments dataset

model	dim	AUC	improvement
KTM: items, skills, wins, fails, extra	5	0.819	
KTM: items, skills, wins, fails, extra	0	0.815	+0.05
KTM: items, skills, wins, fails	10	0.767	
KTM: items, skills, wins, fails	0	0.759	+0.02
<i>DKT</i> (Wilson et al., 2016)	100	0.743	+0.05
IRT: users, items	0	0.691	
PFA: skills, wins, fails	0	0.685	+0.07
AFM: skills, attempts	0	0.616	

 Knowledge Tracing 000000
 user2bias 0000000
 user2vec 00000000
 ???
 Conclusion 00000

 Descure
 intervention
 the leasure of endolvention
 ooo

Bonus: interpreting the learned embeddings

Deep Knowledge Tracing: knowledge tracing as sequence prediction

- Deep Knowledge Tracing. Knowledge tracing as sequence predicti
 - Each student on skill q_t has performance a_t
 - How to predict outcomes **y** on every skill k?
 - Spoiler: by measuring the evolution of a latent state h_t

Chris Piech et al. (2015). "Deep knowledge tracing". In: Advances in Neural Information Processing Systems (NIPS), pp. 505–513

Our approach: encoder-decoder

$$\begin{bmatrix} \mathbf{h}_{t} = Encoder(\mathbf{h}_{t-1}, \mathbf{x}_{t}^{in}) \\ p_{t} = Decoder(\mathbf{h}_{t}, \mathbf{x}_{t}^{out}) \end{bmatrix} t = 1, \dots, T$$

 Knowledge Tracing
 user2bias
 user2vec
 ???
 Conclusion

 000000
 000000000
 000000000
 000000000
 00000

Graphically: deep knowledge tracing

Sein Minn, Yi Yu, Michel Desmarais, Feida Zhu, and Jill-Jênn Vie (2018). "Deep Knowledge Tracing and Dynamic Student Classification for Knowledge Tracing". In: *Proceedings of the 18th IEEE International Conference on Data Mining*, pp. 1182–1187. URL: https://arxiv.org/abs/1809.08713
 Knowledge Tracing
 user2bias
 user2vec
 ???
 Conclusion

 000000
 00000000
 00000000
 000000
 00000000

Results on Fraction dataset						
			000000			
Knowledge Tracing	user2bias	user2vec	???	Conclusion		

500 middle-school students, 20 Fraction subtraction questions, 8 skills (full matrix)

Model	Encoder	Decoder	x_t^{out}	ACC	AUC
Ours	GRU <i>d</i> = 2	bias	iswf	0.880	0.944
КТМ	counter	bias	iswf	0.853	0.918
PFA	counter	bias	swf	0.854	0.917
Ours	Ø	bias	iswf	0.849	0.917
Ours	GRU $d = 50$	Ø		0.814	0.880
DKT	GRU $d = 2$	<i>d</i> = 2	S	0.772	0.844
Ours	GRU <i>d</i> = 2	Ø		0.751	0.800

Knowledge Tracing user2bias user2vec ??? Conclusion

Results on Berkeley dataset

562201 attempts of 1730 students over 234 CS-related items of 29 categories.

Model	Encoder	Decoder	x_t^{out}	ACC	AUC
Ours	GRU <i>d</i> = 50	bias	iswf	0.707	0.778
ктм	counter	bias	iswf	0.704	0.775
Ours	Ø	bias	iswf	0.700	0.770
DKT	GRU <i>d</i> = 50	<i>d</i> = 50	S	0.684	0.751
Ours	GRU <i>d</i> = 100	Ø		0.682	0.750
PFA	counter	bias	swf	0.630	0.683
DKT	GRU $d = 2$	<i>d</i> = 2	S	0.637	0.656

Jill-Jênn Vie and Hisashi Kashima (n.d.). "Encode & Decode: Generalizing Deep Knowledge Tracing and Multidimensional Item Response Theory". under review. URL: http://jiji.cat/bigdata/edm2019_submission.pdf

Knowledge Tracing	user2bias 0000000	user2vec 0000000000	Conclusion •000
Take home m	nessage		

Factorization machines unify many existing EDM models

- Side information improves performance more than higher *d*
- We can visualize learning (and provide feedback to learners)

They can be combined with deep neural networks

- Unidimensional decoders perform better
- But simple counters are good enough encoders

Then we can optimize learning

• Increase success rate of the student

(Clement et al., JEDM 2015)

- Identify something that the student does not know (Teng et al., ICDM 2018, Seznec et al., AISTATS 2019)
 See more on https://humanloarn.io
- See more on https://humanlearn.io

Knowledge Tracing user2bias user2vec ??? Conclusion occooco occo occooco occooco occo occooco occo occooco occooco o

Merci ! Do you have any questions?

https://jilljenn.github.io

I'm interested in:

- predicting student performance
- optimizing human learning using reinforcement learning
- (manga) recommender systems

We are organizing a workshop on June 3–4, 2019 Optimizing Human Learning (Kingston, Jamaica) colocated with Intelligent Tutoring Systems, ITS 2019 CFP open until April 16, 2019: https://humanlearn.io vie@jill-jenn.net

Knowledge Tracing	user2bias 0000000	user2vec 000000000	Conclusion 00●●

Corbett, Albert T and John R Anderson (1994). "Knowledge tracing: Modeling the acquisition of procedural knowledge". In: User modeling and user-adapted interaction 4.4, pp. 253–278. Minn, Sein, Yi Yu, Michel Desmarais, Feida Zhu, and Jill-Jênn Vie (2018). "Deep Knowledge Tracing and Dynamic Student Classification for Knowledge Tracing". In: Proceedings of the 18th IEEE International Conference on Data Mining, pp. 1182–1187. URL: https://arxiv.org/abs/1809.08713. Piech, Chris, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J Guibas, and Jascha Sohl-Dickstein

(2015). "Deep knowledge tracing". In: Advances in Neural Information Processing Systems (NIPS), pp. 505–513.

Rasch, Georg (1960). Studies in mathematical psychology: I. Probabilistic models for some intelligence and attainment tests. Nielsen & Lydiche.

Knowledge Tracing	user2bias 0000000	user2vec 000000000	Conclusion 00●●

- Rendle, Steffen (2012). "Factorization Machines with libFM". In: ACM Transactions on Intelligent Systems and Technology (TIST) 3.3, 57:1–57:22. DOI: 10.1145/2168752.2168771.
- Vie, Jill-Jênn and Hisashi Kashima (n.d.). "Encode & Decode: Generalizing Deep Knowledge Tracing and Multidimensional Item Response Theory". under review. URL: http://jiji.cat/bigdata/edm2019_submission.pdf.
- (2019). "Knowledge Tracing Machines: Factorization Machines for Knowledge Tracing". In: 33th AAAI Conference on Artificial Intelligence. URL: http://arxiv.org/abs/1811.03388.