
A Framework for Comparing Models
for Adaptive Testing

Jill-Jênn Vie

February 19, 2016

Models for Adaptive Testing

Framework, Experiment, Results

NEW! Adaptive Submodularity

Models for Adaptive Testing

Computerized Adaptive Testing (CAT)
Asking the right questions to the right people.

Q5

Q3 Q12

Q1 Q4 Q7 Q14

Figure 1: An adaptive test.

First of all

Assumptions
I Dichotomous items (either answered correctly or incorrectly)
I We do not care about item exposure (yet)

Goals
I We want to ask as few questions as possible in a test.
I Lots of different models. Which ones fit our data the most?

1. Rasch Model (catR)

questions asked

estimated ability

1 2 3 4 5 6 7 8

Figure 2: Example of CAT using the Rasch model.

An example of CAT simulated with catR

We ask question 42 to the examinee.
Correct!
We ask question 48 to the examinee.
Correct!
We ask question 82 to the examinee.
Incorrect.
We ask question 53 to the examinee.
Correct!
We ask question 78 to the examinee.
Incorrect.
We ask question 56 to the examinee.
Correct!
We ask question 76 to the examinee.
Incorrect.
We ask question 58 to the examinee.
Incorrect.

RPy2: R bindings for Python

from rpy2.robjects import r
r('library(catR)')
r('one <- sample(1, 100, T)')
r('itembank <- cbind(one, c(1:100)/100, 1 - one, one)')
pattern = [1, 1, 0, 1, 0, 1, 0, 0]
ql = [42]
for t in range(len(pattern)):

print('We ask question %d to the examinee.' % ql[-1])
print('Correct!' if pattern[t] else 'Incorrect.')
questions = ','.join(map(str, ql))
answers = ','.join(map(str, pattern[:t + 1]))
r('theta <- thetaEst(matrix(itembank[c(%s),],'

'nrow=%d), c(%s))' % (questions, t + 1, answers))
q = r('nextItem(itembank, NULL, theta, x = c(%s),'

'out = c(%s))$item' % (answers, questions))[0]
ql.append(q)

2. Cognitive Diagnosis (CDM) aka Rule-Space Method

Mapping knowledge components (KC) to items in order to diagnose
misconceptions.

Example
I Solving Item 1 requires mastering KC 1 and 2 (or guessing)
I Solving Item 2 requires mastering KC 3
I . . .

At the end of the test, we can provide a feedback to the examinee.

2. Cognitive Diagnosis (CDM) aka Rule-Space Method

Mapping knowledge components (KC) to items in order to diagnose
misconceptions.

Example
I Solving Item 1 requires mastering KC 1 and 2 (or guessing)
I Solving Item 2 requires mastering KC 3
I . . .

At the end of the test, we can provide a feedback to the examinee.

Example: DINA model aka q-matrix
DINA: Deterministic Input, Noisy “And” gate.

2
3 + 5

6 = ?

KC 1 Put at same
denominator

KC 2 Add two fractions of
same denominator

1
2 ×

3
4 = ?

KC 3 Multiply two
fractions

We can provide useful feedback to examinees:
I “You seem to have KC 2 and KC 3 but not KC 1.”

. . . Sorry, I said useful:
I “You seem to be able to add two fractions of same

denominator and multiply two fractions, but not put two
fractions at the same denominator.”

Example: DINA model aka q-matrix
DINA: Deterministic Input, Noisy “And” gate.

2
3 + 5

6 = ?

KC 1 Put at same
denominator

KC 2 Add two fractions of
same denominator

1
2 ×

3
4 = ?

KC 3 Multiply two
fractions

We can provide useful feedback to examinees:
I “You seem to have KC 2 and KC 3 but not KC 1.”

. . . Sorry, I said useful:
I “You seem to be able to add two fractions of same

denominator and multiply two fractions, but not put two
fractions at the same denominator.”

Note: You may not find the DINA model on Google

Figure 3: Another DINA model.

What does a CD-CAT look like?

Cognitive Diagnosis Computerized Adaptive Testing.

Round 1 -> We ask question 9 to the examinee.
It requires KC: [0, 1, 0, 0, 0, 0, 0, 0]
Correct!
Examinee: [0.5, 0.74, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
Estimate: 00000101100000000000

Truth: 00011111111101001111

Round 2 -> We ask question 6 to the examinee.
It requires KC: [0, 0, 0, 0, 0, 0, 1, 0]
Correct!
Examinee: [0.5, 0.74, 0.5, 0.5, 0.5, 0.5, 0.91, 0.5]
Estimate: 00000101100101010000

Truth: 00011111111101001111

What does a CD-CAT look like?

Round 4 -> We ask question 2 to the examinee.
It requires KC: [0, 0, 0, 1, 0, 0, 1, 0]
Incorrect.
Examinee: [0.5, 0.74, 0.5, 0.06, 0.5, 0.5, 0.96, 0.87]
1 1 0 3 3 9 3 8 6 3 4 8 0 7 4 7 3 3 1 2
Estimate: 00000101100101010000

Truth: 00011111111101001111

Round 6 -> We ask question 10 to the examinee.
It requires KC: [0, 1, 0, 0, 1, 0, 1, 1]
Correct!
Examinee: [0.5, 0.99, 0.67, 0.06, 0.98, 0.5, 1.0, 0.99]
Estimate: 00010101111101011001

Truth: 00011111111101001111

3. Regression Trees (Yan, Lewis, Stocking)

Figure 4: CAT using regression trees.

And many more

Multidimensional Item Response Theory
d latent traits instead of 1

MIRT + q-matrix
Measure one latent model per knowledge component

SPARFA: Sparse factor analysis
No access to full response patterns

Multistage testing
Asking questions k by k instead of one by one

But how to compare them?

And many more

Multidimensional Item Response Theory
d latent traits instead of 1

MIRT + q-matrix
Measure one latent model per knowledge component

SPARFA: Sparse factor analysis
No access to full response patterns

Multistage testing
Asking questions k by k instead of one by one

But how to compare them?

They’re all flowcharts! (Or binary decision trees.)

Q5

Q3 Q12

Q1 Q4 Q7 Q14

Figure 5: A binary decision tree.

Framework, Experiment, Results

Train/test datasets for both users and questions

I We train our models using a train dataset of student response
patterns

I We evaluate them on models the following way:
I We ask questions with the same criterion for all models (MFI)
I And keep a validation question set.

Q5

Q3 Q12

Q1 Q4 Q7 Q14

Methods needed

I training_step over train dataset
I init_test
I next_item using questions and answers got so far
I estimate_parameters based on the last answer
I predict_performance of the model over the

validation_question_set

Example: mirt.py calling mirtCAT package

def next_item(self, replied_so_far, results_so_far):
next_item_id = mirtCAT.findNextItem(r.CATdesign)[0]
return next_item_id - 1

def estimate_parameters(self, rep_so_far, res_so_far):
r('CATdesign <- updateDesign(CATdesign, items=...)')
r('CATdesign$person$Update.thetas(CATdesign$design)')

Methods needed

I training_step over train dataset
I init_test
I next_item using questions and answers got so far
I estimate_parameters based on the last answer
I predict_performance of the model over the

validation_question_set

Example: mirt.py calling mirtCAT package

def next_item(self, replied_so_far, results_so_far):
next_item_id = mirtCAT.findNextItem(r.CATdesign)[0]
return next_item_id - 1

def estimate_parameters(self, rep_so_far, res_so_far):
r('CATdesign <- updateDesign(CATdesign, items=...)')
r('CATdesign$person$Update.thetas(CATdesign$design)')

Double cross-validation

(i, j)

Qval = Qj

Itest = Ii

Figure 6: This is not a Belgian chocolate box.

Datasets

SAT test: 296 students, 40 questions
Multidisciplinary: Mathematics, Biology, World History, French.

Fraction subtraction test: 536 students, 20 questions
KCs specified (add fractions of same denominator, etc.).

Results for the Fraction dataset: mean prediction error
(negative log-likelihood)

Results for the Fraction dataset: mean number of
questions predicted correctly

Discussion

Remarks
I After only 4 questions over 15, MIRT + q-matrix can predict

correctly 4 out of 5
I Q-matrix (DINA) alone takes a long time to converge because

first questions measure single KC
I In the early stages, Rasch Model performs well compared to

8-dim MIRT

Future work
I How to compare a flowchart with the optimal flowchart?
I A q-matrix is expensive to build. How helpful is it?
I How to compare CAT with MST?

NEW! Adaptive Submodularity

Adaptive Submodularity (Golovin and Krause, 2010)

Automated diagnosis
Suppose we have different hypotheses about the state of a
patient, and can run medical tests to rule out inconsistent
hypotheses. The goal is to adaptively choose tests to infer
the state of the patient as quickly as possible.

This can be seen as a Stochastic Set Cover problem: we want to
cover as many fake hypotheses as possible.

Adaptive submodular function
∼ convexity over discrete domains (= subsets of items).
If the function to maximize (= information) has a certain property
(monotonic submodular), a greedy flowchart builds a satisfying set:
(1− 1/e) ' 67% of the optimal flowchart in average.

Example 1: Vitamin C

Orange Apple Mango Banana Lemon

51 mg 8 mg 122 mg 10 mg 31 mg

I We want to find the subset of k fruits having biggest vitamin C.
I But vitamin C is an additive function:

vitamin({banana, apple}) =
vitamin({banana}) + vitamin({apple})

I Thus, taking the best fruit at each step is optimal.

What can be done with more generic functions?

f : 2E×O → R≥0

is a function over subsets of pairs (item, outcome).

Monotonicity
The marginal benefit of selecting an item is always
nonnegative

Submodularity
Selecting an item later never increases its marginal benefit

Our application
Any information function is supposed to be monotonic.
Submodularity is a stronger assumption: one can discuss.

Example 2: Maximizing Fisher information

I We want to compare catR’s flowchart of depth k using MFI
criterion with the optimal flowchart (achieving maximal Fisher
information at the leaves).

I If the Fisher information function is monotone submodular,
I catR’s greedy algorithm taking best item for MFI criterion

performs in average (1− 1/e) ' 67% as good as the best
adaptive test. Good job David!

Thanks for listening!

Jill-Jênn Vie

jiji.cat
http://github.com/jilljenn
jjv@lri.fr
If you’re interested in adapting a script for your uses, please drop
me an issue :)

jiji.cat
http://github.com/jilljenn
jjv@lri.fr

	Models for Adaptive Testing
	Framework, Experiment, Results
	NEW! Adaptive Submodularity

