Introduction	Existing models	Knowledge Tracing Machines	Experiments	Future Work	Conclusion

Knowledge Tracing Machines: Factorization Machines for Knowledge Tracing

Jill-Jênn Vie Hisashi Kashima

AAAI 2019

https://arxiv.org/abs/1811.03388

Introduction •00000	Existing models	Knowledge Tracing Machines	Experiments 00000	Future Work 000000	Conclusion
AI for So	ocial Good				

AI can:

- recognize images
- recognize speech
- create fakes (generation)
- play go (decision making)

as long as you have enough data.

Can it also:

- improve education
- automatic exercise generation
- prediction of student performance
- optimizing human learning

as long as you have enough data?

Student	try overcis				
Introduction 00000	Existing models	Knowledge Tracing Machines	Experiments 00000	Future Work 000000	Conclusion

Items	5 - 5 = ?	17 – 3 = ?	13 – 7 = ?		
Student	correct	correct	incorrect		
What can be learned from this?					

Data

A population of students answering questions

• Events: "Student *i* answered question *j* correctly/incorrectly" Side information

• Knowledge components (skills), class ID, school ID, etc.

Goal

- Learn the difficulty of questions automatically from data
- Measure the knowledge of students
- Potentially optimize their learning

Assumption

Good model for prediction \rightarrow Good adaptive policy for teaching

Introduction 000000	Existing models	Knowledge Tracing Machines	Experiments 00000	Future Work 000000	Conclusion 000
Limitati	ons				

- Several models for KT were developed independently
- Some models cannot handle multiple skills at the same time

In this paper

- KTM unify most models
 - Encoding to sparse features
 - Then running logistic regression or FM
- KTM can handle multiple skills
- And build upon them to achieve higher performance

Introduction 0000€0	Existing models	Knowledge Tracing Machines	Experiments 00000	Future Work 000000	Conclusion 000
Our Cor	tributions				

Knowledge Tracing Machines unify many existing EDM models

- It is better to estimate an item per bias, not only per skill
- Side information improves performance more than higher dim.
- Use of factorization machines in the context of educational data mining

Recurrent neural networks are powerful because they learn a more complex function that tracks the evolution of the latent state

- DKT cannot handle multiple skills.
- Most existing models (like DKT) cannot handle multiple skills, but KTM do
- We can combine DKT with side information
- Actually, Wilson, Karklin, Han, and Ekanadham (2016) even managed to beat DKT with (1-dim!) IRT.

Introduction Existing models Knowledge Tracing Machines Experiments Future Work Conclusion

Learning outcomes of this presentation

• Existing models

- Example: on a dummy dataset
- Encoding into logistic regression
- Results on big data
- Knowledge Tracing Machines
 - How to model pairwise interactions
 - Training using MCMC
 - Results on several datasets
- Future Work
 - It makes sense to consider deep neural networks
 - What does deep knowledge tracing model exactly?

Not in the family: Recurrent Neural Networks

• Deep Knowledge Tracing (Piech et al. 2015)

Steffen Rendle (2012). "Factorization Machines with libFM". In: ACM Transactions on Intelligent Systems and Technology (TIST) 3.3, 57:1–57:22. DOI: 10.1145/2168752.2168771

000000	00000000000	000000	00000	000000	000

Weak generalization

Filling the blanks: some students did not attempt all questions

	user	item	correct
a User 1 answered Item 1 correct	1	1	1
• User 1 answered Item 2 incorrect	1	2	0
• User 2 answered Item 1 incorrect	2	1	0
• User 2 answered Item 1 correct	2	1	1 222
• User 2 answered Item 2 ???	Z	Z	!!!

dummy.csv

Introduction 000000	Existing models	Knowledge Tracing Machines	Experiments 00000	Future Work	Conclusion 000
D					

Dummy dataset: strong generalization

Strong generalization

Cold-start: some new students are not in the train set

	user	item	correct
a licer 1 answered item 1 correct	1	1	1
• User 1 answered Item 2 incorrect	1	2	0
• User 2 answered Item 1 ???	2	1	???
• User 2 answered Item 1 ???	2	1	???
User 2 answered Item 2 ???	2	2	???

dummy.csv

Introduction Existing models Knowledge Tracing Machines Experiments O0000 Conclusion O00000 Conclusion O0000 Conclusion O000 Conclusion O0000 Conclusion O0000 Conclusion O0000 Concl

Model 1: Item Response Theory

Learn abilities θ_i for each user *i* Learn easiness e_j for each item *j* such that:

 $Pr(\text{User } i \text{ Item } j \text{ OK}) = \sigma(\theta_i + e_j) \quad \sigma : x \mapsto 1/(1 + \exp(-x))$ logit $Pr(\text{User } i \text{ Item } j \text{ OK}) = \theta_i + e_j$

Logistic regression

Learn \boldsymbol{w} such that logit $Pr(\boldsymbol{x}) = \langle \boldsymbol{w}, \boldsymbol{x} \rangle$ Usually with L2 regularization: $||\boldsymbol{w}||_2^2$ penalty \leftrightarrow Gaussian prior Introduction Existing models Knowledge Tracing Machines Experiments Future Work Conclusion

Graphically: IRT as logistic regression

Encoding "User *i* answered Item *j*" with sparse features:

$$\langle \boldsymbol{w}, \boldsymbol{x}
angle = heta_i + e_j = \text{logit } Pr(\text{User } i \text{ Item } j \text{ OK})$$

Introduction	Existing models	Knowledge Tracing Machines	Experiments	Future Work	Conclusion
	00000000000				

Encoding into sparse features

Users			I	tems	5
U ₀	U_1	U_2	<i>I</i> ₀	I_1	I_2
0	1	0	0	1	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	1	0	1	0
0	0	1	0	0	1

Then logistic regression can be run on the sparse features.

Introduction 000000	Existing models	Knowledge Tracing Machines	Experiments 00000	Future Work 000000	Conclusion 000
Oh. the	re's a probl	em			

		Users		I	tem	5		
	U ₀	U_1	U_2	<i>I</i> ₀	<i>I</i> ₁	I_2	y pred	y
User 1 Item 1 OK	0	1	0	0	1	0	0.575135	1
User 1 Item 2 NOK	0	1	0	0	0	1	0.395036	0
User 2 Item 1 NOK	0	0	1	0	1	0	0.545417	0
User 2 Item 1 <mark>OK</mark>	0	0	1	0	1	0	0.545417	1
User 2 Item 2 NOK	0	0	1	0	0	1	0.366595	0

We predict the same thing when there are several attempts.

Count	number of	$\Delta = \Delta = \Lambda$			
	0000000000000	0000000			
Introduction	Existing models	Knowledge Tracing Machines	Experiments	Future Work	Conclusion

Count number of attempts: AFM

Keep track of what the student has done before:

user	item	skill	correct	wins	fails
1	1	1	1	0	0
1	2	2	0	0	0
2	1	1	0	0	0
2	1	1	1	0	1
2	2	2	0	0	0

000000	0000000	00000	OOOOOO	000
Counts	nd failures PFA			

Separate successes W_{ik} and fails F_{ik} of student *i* over skill *k*.

user	item	skill	correct	wins	fails
1	1	1	1	0	0
1	2	2	0	0	0
2	1	1	0	0	0
2	1	1	1	0	1
2	2	2	0	0	0

Introduction Existing models 00000000000 Knowledge Tracing Machines Experiments 00000 Future Work Conclusion 000

Model 2: Performance Factor Analysis

 W_{ik} : how many successes of user *i* over skill *k* (F_{ik} : #failures) Learn β_k , γ_k , δ_k for each skill *k* such that:

$$\operatorname{logit} Pr(\operatorname{User} i \operatorname{Item} j \operatorname{OK}) = \sum_{\operatorname{Skill} k ext{ of Item } j} rac{eta_k}{p_k} + W_{ik} \gamma_k + F_{ik} \delta_k$$

	Skills			Wins			Fails	
S_0	S_1	<i>S</i> ₂	S_0	S_1	<i>S</i> ₂	S_0	S_1	S_2
0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0

Introduction 000000	Existing models 00000000000000	Knowledge Tracing Machines	Experiments 00000	Future Work 000000	Conclusion
Better!					

	5	Skill	s		Wir	าร		Fai	s	_	
	<i>S</i> ₀	S_1	<i>S</i> ₂	S_0	S_1	S_2	S_0	S_1	<i>S</i> ₂	y _{pred}	y
User 1 Item 1 OK	0	1	0	0	0	0	0	0	0	0.544	1
User 1 Item 2 NOK	0	0	1	0	0	0	0	0	0	0.381	0
User 2 Item 1 NOK	0	1	0	0	0	0	0	0	0	0.544	0
User 2 Item 1 <mark>OK</mark>	0	1	0	0	0	0	0	1	0	0.633	1
User 2 Item 2 NOK	0	0	1	0	0	0	0	0	0	0.381	0

346860 attempts of 4217 students over 26688 items on 123 skills.

model	dim	AUC	improvement
PFA: skills, wins, fails	<mark>0</mark>	<mark>0.685</mark>	+0.07
AFM: skills, attempts	0	0.616	

Introduction	Existing models	Knowledge Tracing Machines	Experiments	Future Work	Conclusion
000000		●000000	00000	000000	000
Model 3	: a new mo	odel (but still log	istic regr	ession)	

w	θ_i			ej
	Ui			l _j
x	1			1
	Users		I	tems
	model	dim	AUC	improvement
\mathbf{r} \mathbf{r} \mathbf{v} .	items, skills, wins, fails	0	0.746	+0.06
	items, skills, wins, fails RT: users, items	<mark>0</mark> 0	<mark>0.746</mark> 0.691	+0.06 +0.06
PF	items, skills, wins, fails RT: users, items A: skills, wins, fails	0 0 0	0.746 0.691 0.685	+0.06 +0.06 +0.07

Introduction 000000	Existing models	Knowledge Tracing Machines	Experiments 00000	Future Work 000000	Conclusion 000
Here co	mes a new	challenger			

How to model pairwise interactions with side information?

Logistic Regression

Learn a 1-dim bias for each feature (each user, item, etc.)

Factorization Machines

Learn a 1-dim bias and a k-dim embedding for each feature

Introduction	Existing models	Knowledge Tracing Machines	Experiments	Future Work	Conclusion
000000		00●0000	00000	000000	000

How to model pairwise interactions with side information?

If you know user *i* attempted item *j* on mobile (not desktop) How to model it?

y: score of event "user i solves correctly item j"

Multidimensional IRT (similar to collaborative filtering)

$$y = heta_i + e_j + \langle \mathbf{v}_{user} | \mathbf{i}, \mathbf{v}_{item} | \mathbf{j}
angle$$

 $y = \theta_i + e_i$

With side information

IRT

$$y = \theta_i + e_j + \langle \mathbf{v}_{\text{user } i}, \mathbf{v}_{\text{item } j} \rangle + \langle \mathbf{v}_{\text{user } i}, \mathbf{v}_{\text{mobile}} \rangle + \langle \mathbf{v}_{\text{item } j}, \mathbf{v}_{\text{mobile}} \rangle$$

Introduction 000000	Existing models	Knowledge Tracing Machines 000●000	Experiments 00000	Future Work 000000	Conclusion

Graphically: logistic regression

Introduction	Existing models	Knowledge Tracing Machines	Experiments	Future Work	Conclusion
		0000000			
<u> </u>	н с .				

Graphically: factorization machines

Introduction Existing models 0000000 Existing models 0000000 Experiments 00000 Conclusion 0000000 Conclusion 000000 Conclusion 0000000 Conclusion 000000 Conclusion 00000 Conclusion 0000 Conclusion 0000 Conclusion 0000 Conclusion 0000 Conclusion 00000 Conclusion 0000 Conclusion 00

Formally: factorization machines

Learn bias w_k and embedding v_k for each feature k such that:

Multidimensional item response theory: logit $p(\mathbf{x}) = \langle \mathbf{u}_i, \mathbf{v}_j \rangle + e_j$ is a particular case.

Steffen Rendle (2012). "Factorization Machines with libFM". In: ACM Transactions on Intelligent Systems and Technology (TIST) 3.3, 57:1–57:22. DOI: 10.1145/2168752.2168771

Introduction	Existing models	Knowledge Tracing Machines	Experiments	Future Work	Conclusion
000000		000000●	00000	000000	000
Training	using MCI	МС			

Algorithm 1 MCMC implementation of FMs

Prior on every V

for each iteration **do** Sample hyperparameters from posterior using MCMC

Sample weights w

Sample vectors V

Sample predictions y

end for

Implementation libFM with pyWFM wrapper.

Steffen Rendle (2012). "Factorization Machines with libFM". In: ACM Transactions on Intelligent Systems and Technology (TIST) 3.3, 57:1–57:22. DOI: 10.1145/2168752.2168771

_	000000000000			000000	000
Introduction	Existing models	Knowledge Tracing Machines	Experiments	Future Work	Conclusion

-				- 1	
	- C	г⊃	c	വ	FC.
		LO	0		6.0
		_			

Name	Users	Items	Skills	Skills/i	Entries	Sparsity	Attempts/u
fraction	536	20	8	2.800	10720	0.000	1.000
timss	757	23	13	1.652	17411	0.000	1.000
ecpe	2922	28	3	1.321	81816	0.000	1.000
assistments	4217	26688	123	0.796	346860	0.997	1.014
berkeley	1730	234	29	1.000	562201	0.269	1.901
castor	58939	17	2	1.471	1001963	0.000	1.000

Results on the Assistments dataset

Introduction	Existing models	Knowledge Tracing Machines	Experiments	Future Work	Conclusion
			00000		

Accuracy results on the Assistments dataset

model	dim	AUC	improvement
KTM: items, skills, wins, fails	10	0.752	+0.01
KTM: items, skills, wins, fails	0	0.746	
<i>DKT</i> (Wilson et al., 2016)	100	0.743	+0.05
IRT: users, items	0	0.691	+0.06
PFA: skills, wins, fails	0	0.685	+0.07
AFM: skills, attempts	0	0.616	

Introduction 000000	Existing models	Knowledge Tracing Machines	Experiments 000●0	Future Work 000000	Conclusion
	1. 11	1			

AU	Cr	esults	on	all	d	atasets	
----	----	--------	----	-----	---	---------	--

AUC	AFM	PFA	IRT	MIRTb20	KTM(iswf0)	KTM(iswf20)	KTM(iswfe5)
assistments berkeley	0.6163 0.675	0.6849 0.6839	0.6908 0.7532	0.6907 0.7519	0.7589 0.7753	0.7502 0.7780	0.8186
fraction timss	-	-	0.6662 0.6946	0.6672 0.6932	-	_ _ _	-
castor	-	-	0.7603	0.7599	-	-	-

Bonus: interpreting the learned embeddings

 Introduction
 Existing models
 Knowledge Tracing Machines
 Experiments
 Future Work
 Conclusion

 000000
 0000000000
 000000
 000000
 000000
 000

 What 'bout recurrent neural networks?

Deep Knowledge Tracing: model the problem as sequence prediction

- Each student on skill q_t has performance a_t
- How to predict outcomes **y** on every skill k?
- Spoiler: by measuring the evolution of a latent state h_t

Chris Piech et al. (2015). "Deep knowledge tracing". In: Advances in Neural Information Processing Systems (NIPS), pp. 505–513

Graphically: deep knowledge tracing

 Introduction
 Existing models
 Knowledge Tracing Machines
 Experiments
 Future Work
 Conclusion

 Graphically: there is a MIRT in my DKT

By estimating on-the-fly the student's learning ability, we managed to get a better model.

AUC	BKT	IRT	PFA	DKT	DKT-DSC
Assistments 2009	0.67	0.75	0.70	0.73	0.91
Assistments 2012	0.61	0.74	0.67	0.72	0.87
Assistments 2014	0.64	0.67	0.69	0.72	0.87
Cognitive Tutor	0.61	0.81	0.76	0.79	0.81

Sein Minn, Yi Yu, Michel Desmarais, Feida Zhu, and Jill-Jênn Vie (2018). "Deep Knowledge Tracing and Dynamic Student Classification for Knowledge Tracing". In: *Proceedings of the 18th IEEE International Conference on Data Mining*, to appear. URL: https://arxiv.org/abs/1809.08713

Introduction 000000	Existing models	Knowledge Tracing Machines	Experiments 00000	Future Work 0000●0	Conclusion 000
Results					

model	dim	AUC	improvement
DKT-DSC + KTM (<you>, 2019?)</you>	200	???	
DKT-DSC (Minn et al., 2018)	200	0.910	+0.16
KTM: items, skills, wins, fails	10	0.752	+0.01
KTM: items, skills, wins, fails	0	0.746	
DKT (Wilson et al., 2016)	100	0.743	+0.05
IRT: users, items	0	0.691	+0.06
PFA: skills, wins, fails	0	0.685	+0.07
AFM: skills, attempts	0	0.616	

Introduction 000000	Existing models	Knowledge Tracing Machines	Experiments 00000	Future Work 00000●	Conclusion 000
Future v	vork				

- Side info in DKT
- Adaptive testing
- Higher order
- Response time, spaced repetition
- Ordinal regression

Introduction 000000	Existing models	Knowledge Tracing Machines	Experiments 00000	Future Work 000000	Conclusion ●00
Take ho	me messag	e			

Factorization machines are a strong baseline that unifies many existing EDM models

- It is better to estimate an item per bias, not only per skill
- Side information improves performance more than higher d

Recurrent neural networks are powerful because they track the evolution of the latent state

- Most existing models (like DKT) cannot handle multiple skills, but KTM do
- We should combine DKT with side information

Introduction 000000	Existing models	Knowledge Tracing Machines	Experiments 00000	Future Work 000000	Conclusion 0●0

Any suggestions are welcome!

Read our article:

Knowledge Tracing Machines https://arxiv.org/abs/1811.03388

Try the code:

```
https://github.com/jilljenn/ktm
```

Feel free to chat:

vie@jill-jenn.net

Do you have any questions?

- Minn, Sein, Yi Yu, Michel Desmarais, Feida Zhu, and Jill-Jênn Vie (2018). "Deep Knowledge Tracing and Dynamic Student Classification for Knowledge Tracing". In: Proceedings of the 18th IEEE International Conference on Data Mining, to appear. URL: https://arxiv.org/abs/1809.08713.
- Piech, Chris, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J Guibas, and Jascha Sohl-Dickstein (2015). "Deep knowledge tracing". In: Advances in Neural Information Processing Systems (NIPS), pp. 505–513.
- Rendle, Steffen (2012). "Factorization Machines with libFM". In: ACM Transactions on Intelligent Systems and Technology (TIST) 3.3, 57:1–57:22. DOI: 10.1145/2168752.2168771.
- Wilson, Kevin H., Yan Karklin, Bojian Han, and Chaitanya Ekanadham (2016). "Back to the basics: Bayesian extensions of IRT outperform neural networks for proficiency estimation". In: Proceedings of the 9th International Conference on Educational Data Mining (EDM), pp. 539–544.