
Multilayer Perceptrons:
Expressiveness, overfitting, regularization

Marc Lelarge Kevin Scaman Jill-Jênn Vie

Oct 21, 2022

Multilayer Perceptrons (MLP)

x(0) = x
x(ℓ+1) = σ(W (ℓ)x(ℓ) + b(ℓ)) ℓ = 0, . . . , L − 2

y = x(L) = W (L−1)x(L−1) + b(L−1)

The ℓth layer has dℓ neurons. Input layer ℓ = 0, output layer ℓ = L.
σ is the link function. Usually, σ = ReLU = max(0, x). #params?

1 from torch import nn
2

3 mlp = nn.Sequential(
4 nn.Linear(d0, d1),
5 nn.ReLU(),
6 nn.Linear(d1, d2),
7 ...
8 nn.Linear(dL−1, dL)
9)

Multilayer Perceptrons (MLP)

x(0) = x ∈ Rd0

x(ℓ+1) = σ(W (ℓ)x(ℓ) + b(ℓ)) ∈ Rdℓ ℓ = 0, . . . , L − 2
y = x(L) = W (L−1)x(L−1) + b(L−1) ∈ RdL

The ℓth layer has dℓ neurons. Input layer ℓ = 0, output layer ℓ = L.
σ is the link function. Usually, σ = ReLU = max(0, x). #params?

1 from torch import nn
2

3 mlp = nn.Sequential(
4 nn.Linear(d0, d1),
5 nn.ReLU(),
6 nn.Linear(d1, d2),
7 ...
8 nn.Linear(dL−1, dL)
9)

Multilayer Perceptrons (MLP)

x(0) = x ∈ Rd0

x(ℓ+1) = σ(W (ℓ)x(ℓ) + b(ℓ)) ∈ Rdℓ ℓ = 0, . . . , L − 2
y = x(L) = W (L−1)x(L−1) + b(L−1) ∈ RdL

The ℓth layer has dℓ neurons. Input layer ℓ = 0, output layer ℓ = L.
σ is the link function. Usually, σ = ReLU = max(0, x). #params?

1 from torch import nn
2

3 mlp = nn.Sequential(
4 nn.Linear(d0, d1),
5 nn.ReLU(),
6 nn.Linear(d1, d2),
7 ...
8 nn.Linear(dL−1, dL)
9)

Example: logistic regression is a 1-layer perceptron

y = σ(wT x + b) where σ = sigmoid = 1/(1 + exp(−x))

A ReLU-based MLP with inputs in Rn, L layers of width k ≥ n, can compute functions
that have Ω((k/n)n(L−1)nk) linear regions.

Guido F Montufar et al. “On the number of linear regions of deep neural networks”. In:
Advances in Neural Information Processing Systems. Vol. 27. 2014, pp. 2924–2932

A ReLU-based MLP with inputs in Rn, L layers of width k ≥ n, can compute functions
that have Ω((k/n)n(L−1)nk) linear regions.

Guido F Montufar et al. “On the number of linear regions of deep neural networks”. In:
Advances in Neural Information Processing Systems. Vol. 27. 2014, pp. 2924–2932

Expressiveness
The number of activation patterns (∼ regions) of a ReLU-based MLP with L layers of
width k, inputs in Rn is upper bounded (tightly) by O(knL) as L → ∞.

Maithra Raghu et al. “On the expressive power of deep neural networks”. In:
International Conference on Machine Learning. PMLR. 2017, pp. 2847–2854

Universal approximation theorems

Fixed depth 2 arbitrary width k (Pinkus, 1999) (Cybenko, 1989)
Let σ ∈ C(R) a continuous function from R to R.
Then: σ is not polynomial ⇐⇒
For all ε > 0, n, m ∈ N, compact K ⊆ Rn, function f ∈ C(K , Rm),
there exist latent dimension k and weights W , b, C such that

sup
x∈K

||f (x) − MLP(x)|| < ε MLP(x) = Cσ(Wx + b).

In other words, 2-layer MLPs are dense in C(K , Rm).
They are universal approximators of continuous functions.

Universal approximation theorems

Fixed depth 2 arbitrary width k (Pinkus, 1999) (Cybenko, 1989)
Let σ ∈ C(R) a continuous function from R to R.
Then: σ is not polynomial ⇐⇒
For all ε > 0, n, m ∈ N, compact K ⊆ Rn, function f ∈ C(K , Rm),
there exist latent dimension k and weights W , b, C such that

sup
x∈K

||f (x) − MLP(x)|| < ε MLP(x) = Cσ(Wx + b).

In other words, 2-layer MLPs are dense in C(K , Rm).
They are universal approximators of continuous functions.

Universal approximation theorems

Arbitrary depth, minimal width (Park, 2020)
For any function f ∈ Lp(Rn, Rm) and any ε > 0
there exists a MLP with ReLU of width max(n + 1, m) such that

||f − MLP||p =
(∫

Rn
||f (x) − MLP(x)||pdx

)1/p
< ε.

Moreover:

Arbitrary depth, constrained width (Kidger and Lyons, 2020)
Let N be the space of MLP : Rn → Rm with any layers having n + m + 2 neurons.
Then: N is dense in C(K , Rm) where compact K ⊆ Rn.

Universal approximation theorems

Arbitrary depth, minimal width (Park, 2020)
For any function f ∈ Lp(Rn, Rm) and any ε > 0
there exists a MLP with ReLU of width max(n + 1, m) such that

||f − MLP||p =
(∫

Rn
||f (x) − MLP(x)||pdx

)1/p
< ε.

Moreover:

Arbitrary depth, constrained width (Kidger and Lyons, 2020)
Let N be the space of MLP : Rn → Rm with any layers having n + m + 2 neurons.
Then: N is dense in C(K , Rm) where compact K ⊆ Rn.

Some other theoretical results

Infinite-depth limit
▶ Untrained MLP with random weights (Karakida, Akaho & Amari, 2018)

The Fisher information matrix i.e. ∂2L
∂θ2 has eigenvalues having mean O(1/M), variance

O(1) and max O(M).
▶ Neural Tangent Kernels (Jacot, Gabriel & Hongler, 2018)

Turing-completeness
▶ RNNs are Turing-complete (Siegelmann & Sontag, 1995)
▶ LSTMs can perform unbounded counting while GRUs cannot (Weiss, Goldberg &

Yahav, 2018)
▶ Neural Turing Machines with external memory (Graves, Wayne & Danihelka, 2014)

Training MLP with random labels?! (Maennel et al., 2020)

Overfitting

Fitting
Polynomial degree 1 Y = wX + b

Linear regression
scipy.stats.linreg

Overfitting
Polynomial degree 6 Y =

∑6
k=0 wkX k

Lagrange interpolation
scipy.interpolation.lagrange

Bias-variance decomposition
Samples xi , yi ∈ R. We train a model gθ.
Let us assume that yi = f (xi) + εi where εi ∈ N (0, σ2).
Then: the generalization error for the squared loss verifies

E[(Y − gθ(X))2] = Bias(gθ)2 + Var(gθ) + σ2

= E[gθ − f]2 + E[(gθ − Egθ)2] + σ2.

Bias-variance decomposition
Samples xi , yi ∈ R. We train a model gθ.
Let us assume that yi = f (xi) + εi where εi ∈ N (0, σ2).
Then: the generalization error for the squared loss verifies

E[(Y − gθ(X))2] = Bias(gθ)2 + Var(gθ) + σ2

= E[gθ − f]2 + E[(gθ − Egθ)2] + σ2.

Proof.
Ef = f EY = f Var(Y) = σ2

As ε and gθ are independent:
E

[
(Y − gθ)2]

= E
[
Y 2 + gθ

2 − 2Y gθ

]
= E

[
Y 2]

+ E
[
gθ

2]
− E[2Y gθ]

= Var(Y) + E[Y]2 + Var(gθ) + E[gθ]2 − 2f E[gθ]
= Var(Y) + Var(gθ) + (f − E[gθ])2

= Var(Y) + Var(gθ) + E[f − gθ]2

= σ2 + Var(gθ) + Bias(gθ)2.

How to detect overfitting?

By keeping a validation set

How to detect overfitting?

By keeping a validation set

Hyperparameter selection by cross-validation

1 trainval, test = split data into 80:20
2 train, valid = split trainval into 80:20
3

4 for each hyperparameter λ:
5 minimize error on train using λ
6 valid_scoreλ ← evaluate metric on valid
7 λ∗ ← λ achieving best valid_scoreλ

8 minimize error on trainval using λ∗ (= refit)

Early stopping

1 def training_loop(train, valid):
2 for each epoch:
3 for x, y in train:
4 do one step of gradient
5 valid_score ← evaluate metric on valid
6 if valid_score is worse than before:
7 return

Example

Let us consider logistic regression i.e. 1-layer MLP:

f (xi) = σ(Wxi + b)

Logistic loss: L =
∑

i −(1 − yi) log(1 − f (xi)) − yi log f (xi)

If all samples have same target yi = 1 (or if there’s only 1 sample), what will happen?

MLP believes everything is a cat.

▶ Minimize − log σ(Wx1 + b)
▶ σ(Wx1 + b) → 1
▶ Wx1 + b → +∞
▶ Parameters |W | and b diverge to +∞

Add penalty to loss ||W ||22 + ||b||22 (= assuming a Gaussian prior centered in 0), called
L2 regularization

Example

Let us consider logistic regression i.e. 1-layer MLP:

f (xi) = σ(Wxi + b)

Logistic loss: L =
∑

i −(1 − yi) log(1 − f (xi)) − yi log f (xi)

If all samples have same target yi = 1 (or if there’s only 1 sample), what will happen?

MLP believes everything is a cat.

▶ Minimize − log σ(Wx1 + b)
▶ σ(Wx1 + b) → 1
▶ Wx1 + b → +∞
▶ Parameters |W | and b diverge to +∞

Add penalty to loss ||W ||22 + ||b||22 (= assuming a Gaussian prior centered in 0), called
L2 regularization

Regularize to generalize

Minimizing loss:
May fall in local minima or diverge to ∞

Minimizing loss + regularization:
Easier to optimize

4 2 0 2 4 6 8 10

Er
ro

r

4 2 0 2 4 6 8 10

Er
ro

r

We will see an example next week.

Take home message

Expressiveness
▶ 2-layer MLPs are universal approximators of continuous functions
▶ Try to overfit a single batch; otherwise your model cannot express the data.

Bias-variance trade-off
There is incompressible error due to inherent noise

Overfitting
▶ Don’t look at test data it’s forbidden
▶ Implement early stopping
▶ And L2 regularization

Today’s practical: datasets
Digits

1797 × 8 × 8 images representing numbers between 0 and 9.

Red Wine Quality1 (Cortez et al., 2009)
1599 wines × 11 features2, have to predict quality which is an integer between 0 and 10
(in practice between 3 and 8).

Also: Faces, Cats and dogs
1https://kaggle.com/datasets/uciml/red-wine-quality-cortez-et-al-2009
2fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur

dioxide, density, pH, sulphates, alcohol

https://kaggle.com/datasets/uciml/red-wine-quality-cortez-et-al-2009

[1] Guido F Montufar et al. “On the number of linear regions of deep neural networks”.
In: Advances in Neural Information Processing Systems. Vol. 27. 2014,
pp. 2924–2932.

[2] Maithra Raghu et al. “On the expressive power of deep neural networks”. In:
International Conference on Machine Learning. PMLR. 2017, pp. 2847–2854.

