Multilayer Perceptrons:
Expressiveness, overfitting, regularization

Marc Lelarge Kevin Scaman Jill-Jénn Vie

Oct 21, 2022

Multilayer Perceptrons (MLP)

xEH) = (WX 4 Oy p=0,...,L-2
y = x(D) = W=D x(L=1) 4 p(L-1)

Multilayer Perceptrons (MLP)

x(® = x € R%
xHD = oW L pOy e R* ¢=0,... L—2
y = xt) = W-DyL-D) 4 p-1) ¢ Re:

The ¢th layer has dy neurons. Input layer £ = 0, output layer £ = L.
o is the link function. Usually, 0 = ReLU = max(0, x). #params?

Multilayer Perceptrons (MLP)

x(® = x € R%
xHD = oW L pOy e R* ¢=0,... L—2
y = xt) = W-DyL-D) 4 p-1) ¢ Re:

The ¢th layer has dy neurons. Input layer £ = 0, output layer £ = L.
o is the link function. Usually, 0 = ReLU = max(0, x). #params?

from torch import nn

1

2

3 mlp = nn.Sequential(
4 nn.Linear(dy, di),
5 nn.RelLU(),

6 nn.Linear(di, do),
7
8
9

nn.Linear(d;—1, di)

)

Example: logistic regression is a 1-layer perceptron

y = o(wT x + b) where ¢ = sigmoid = 1/(1 + exp(—x))

Distributed Representations: The Power of
Compostttohatitj - Part 1

* Distributed (possibly sparse) representations, learned from
data, can capture the meaning of the data and state

¢ Parallel composition of features: can be exponentially
advantageous

Sub-partition 3
‘e Sub—partition 2
Ci=l o

v
Sub—partition 1 /s

DISTRIBUTED PARTITION

LOCAL PARTITION

Not Distributed Distributed

Al

4

Yoshua Bengi... W >

Distributed Representations: The Power of]
Compositionality - Part 1 b Sy

¢ Distributed (possibly sparse) representations, learned from
data, can capture the meaning of the data and state

¢ Parallel composition of features: can be exponentially
advantageous

Sub-partition 3
‘e Sub—partition 2
Ci=l o

Sub—partition 1

DISTRIBUTED PARTITION

LOCAL PARTITION

Not Distributed Distributed

A RelLU-based MLP with inputs in R”, L layers of width k > n, can compute functions
that have Q((k/n)"(t=1)nk) linear regions.

Expressiveness
The number of activation patterns (~ regions) of a ReLU-based MLP with L layers of

width k, inputs in R" is upper bounded (tightly) by O(k"!) as L — oco.

Layer 0
T

Maithra Raghu et al. “On the expressive power of deep neural networks”. In:
International Conference on Machine Learning. PMLR. 2017, pp. 2847-2854

Universal approximation theorems

Fixed depth 2 arbitrary width k (Pinkus, 1999) (Cybenko, 1989)

Let o0 € C(R) a continuous function from R to R.

Then: o is not polynomial <—
For all ¢ > 0, n,m € N, compact K C R", function f € C(K,R™),

there exist latent dimension k and weights W, b, C such that

sup ||[f(x) — MLP(x)|| < e MLP(x) = Co(Wx + b).
xeK

Universal approximation theorems

Fixed depth 2 arbitrary width k (Pinkus, 1999) (Cybenko, 1989)

Let o0 € C(R) a continuous function from R to R.

Then: o is not polynomial <—
For all ¢ > 0, n,m € N, compact K C R", function f € C(K,R™),
there exist latent dimension k and weights W, b, C such that

sup ||[f(x) — MLP(x)|| < e MLP(x) = Co(Wx + b).
xeK

In other words, 2-layer MLPs are dense in C(K,R™).
They are universal approximators of continuous functions.

Universal approximation theorems

Arbitrary depth, minimal width (Park, 2020)

For any function f € LP(R",;R™) and any ¢ > 0
there exists a MLP with ReLU of width max(n + 1, m) such that

1/p
||f — MLP||, = </ ||f(x)—MLP(x)||pdx> <e.
Rn

Universal approximation theorems

Arbitrary depth, minimal width (Park, 2020)

For any function f € LP(R",;R™) and any ¢ > 0
there exists a MLP with ReLU of width max(n + 1, m) such that

1/p
||f —MLP||, = </ ||f(x)—MLP(x)||pdx> <e.
er
Moreover:

Arbitrary depth, constrained width (Kidger and Lyons, 2020)

Let NV be the space of MLP : R” — R™ with any layers having n + m + 2 neurons.
Then: N is dense in C(K, R™) where compact K C R".

Some other theoretical results

Infinite-depth limit

» Untrained MLP with random weights (Karakida, Akaho & Amari, 2018)
The Fisher information matrix i.e. ?92712: has eigenvalues having mean O(1/M), variance
O(1) and max O(M).

» Neural Tangent Kernels (Jacot, Gabriel & Hongler, 2018)

Turing-completeness

» RNNs are Turing-complete (Siegelmann & Sontag, 1995)

» LSTMs can perform unbounded counting while GRUs cannot (Weiss, Goldberg &
Yahav, 2018)

» Neural Turing Machines with external memory (Graves, Wayne & Danihelka, 2014)

Training MLP with random labels?! (Maennel et al., 2020)

Overfitting

Fitting
Polynomial degree 1 Y = wX + b

Linear regression Train MSE: 0.529942 Test MSE: 1.695881

1 e Tain (]
Test
—— Linear regression

Linear regression
scipy.stats.linreg

Overfitting
Polynomial degree 6 Y = 22:0 wy XK

Lagrange interpolation Train MSE: 0.000000 Test MSE: 3.894442
10

e Train
Test
—— Lagrange polynomial

Lagrange interpolation
scipy.interpolation.lagrange

Bias-variance decomposition
Samples x;, y; € R. We train a model gg.
Let us assume that y; = f(x;) + €; where &; € N(0,02).
Then: the generalization error for the squared loss verifies
E[(Y — go(X))?] = Bias(gs)? + Var(gg) + o
= Elgo — > + E[(go — Ego)*] + 0.

Total Error

Variance

Optimum Model Complexity

Error

b
v

Bias-variance decomposition
Samples x;, y; € R. We train a model gg.
Let us assume that y; = f(x;) + €; where &; € N(0,02).
Then: the generalization error for the squared loss verifies
E[(Y — go(X))?] = Bias(gs)? + Var(gg) + o
= Elgo — > + E[(go — Ego)*] + 0.

Proof.
Ef=f EY =f Var(Y)=c>

As € and gy are independent:
E[(Y —g0)’] =E[Y?+go° —2Ygo]
=E[Y?] +E [go°] — E[2Ygo]
= Var(Y) + E[Y]? + Var(ge) + E[go]* — 2fE|[gp]
— Var(Y) + Var(ga) + (f — E[ga])?
= Var(Y) + Var(gg) + E[f — go]?
= 02 4 Var(gy) + Bias(ge)>.

How to detect overfitting?

Y

How to detect overfitting?

> By keeping a validation set

A ‘ All Data ‘

‘ Training data Test data ‘

| Fold1 || Fold2 || Fold3 || Fold4 | Folds |

/ spiit1 [Fold1 || Fold2 || Folas || Fola4 || Foids |

spit2 | Fold1 || Fold2 || Fold3 || Foid4 || Folds |

Finding Parameters

spiits | Foid1 || Fold2 || Folds || Foid4 || Folds |

\ spit4 | Foid1 || Fold2 || Folds || Fold4 || Folds |

Spits | Fold1 || Fold2 || Fold3 || Fold4 || Folds
Final evaluation {

Y

Hyperparameter selection by cross-validation

‘ All Data ‘

‘ Training data Test data ‘

[Foid1 || Fold2 || Foas || Foid4 |[Folds
Split 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

spit2 | Fold1 | [Fold2 | Fold3 |[Folda || Folds

Finding Parameters

spiits | Fold1 || Fold2 | [Fold3 || Foida | Folus |
spit5 | Fold1 || Fold2 || Foid3 || Fold4 |[Folds |
Final evaluation {%

trainval, test = split data into 80:20
train, valid = split trainval into 80:20

for each hyperparameter A:
minimize error on train using A
valid_score, < evaluate metric on valid
A* <)\ achieving best valid_scorey
minimize error on trainval using A" (= refit)

W N O gse W N

Early stopping

Y

1 def training_loop(train, valid):

2 for each epoch:

3 for x, y in train:

4 do one step of gradient

5 valid_score < evaluate metric on valid
6 if valid_score is worse than before:

7 return

Example

Let us consider logistic regression i.e. 1-layer MLP:
f(x;) = o(Wx; + b)
Logistic loss: £ = 3; —(1 — yi) log(1 — f(x;)) — yilog f(x;)

If all samples have same target y; = 1 (or if there's only 1 sample), what will happen?

Example

Let us consider logistic regression i.e. 1-layer MLP:

f(x;) = o(Wx; + b)

Logistic loss: £ = 37; —(1 — y;) log(1 — f(x;)) — yi log f(x;)

If all samples have same target y; = 1 (or if there's only 1 sample), what will happen?
MLP believes everything is a cat.

» Minimize — log o(Wx; + b)

> o(Wx; +b) — 1

> Wx; +b— +oo

» Parameters |W| and b diverge to +oo

Add penalty to loss ||W/||3 + ||b||3 (= assuming a Gaussian prior centered in 0), called
L> regularization

Regularize to generalize

Minimizing loss:
May fall in local minima or diverge to oo

Minimizing loss + regularization:
Easier to optimize

We will see an example next week.

Take home message

Expressiveness

» 2-layer MLPs are universal approximators of continuous functions
» Try to overfit a single batch; otherwise your model cannot express the data.

Bias-variance trade-off
There is incompressible error due to inherent noise

Overfitting
> Don't look at test data it's forbidden
» Implement early stopping
> And L, regularization

Today's practical: datasets
Digits

FI

1797 x 8 x 8 images representing numbers between 0 and 9.

Red Wine Quality® (Cortez et al., 2009)
1599 wines x 11 features?, have to predict quality which is an integer between 0 and 10
(in practice between 3 and 8).

Also: Faces, Cats and dogs

https://kaggle.com /datasets/uciml/red-wine-quality-cortez-et-al-2009
2fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur
dioxide, density, pH, sulphates, alcohol

https://kaggle.com/datasets/uciml/red-wine-quality-cortez-et-al-2009

[1] Guido F Montufar et al. “On the number of linear regions of deep neural networks".
In: Advances in Neural Information Processing Systems. Vol. 27. 2014,
pp. 2924-2932.

[2] Maithra Raghu et al. “On the expressive power of deep neural networks”. In:
International Conference on Machine Learning. PMLR. 2017, pp. 2847-2854.

