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Abstract. Changes of latent skills of learners can be modeled by a
state space model from sequential observations of their answers to ques-
tions. The model using continuous skill states and non-compensatory
emissions has the potential to accurately predict whether learners can
answer questions and explain which skill they are missing when they
cannot answer the questions. To explore this potential, we propose a
statistical model that combines a linear dynamical system with a non-
compensatory model. Since this results in a complicated posterior of
the skill states, we propose an approximation using a local variational
method. We experimentally show that our variational posterior ade-
quately approximates the true posterior using artificial data, and also
our model outperforms two popular deep learning-based methods in pre-
diction using open datasets.

Keywords: Personalized education · knowledge tracing · item response
theory · Kalman filter · variational approximation.

1 Introduction

Changes of latent skills of learners can be modeled by a state space model from
sequential observations of their answers to questions. This modeling technique
has been studied in knowledge tracing (KT) [6, 8, 12] and cognitive diagnostic
models (CDMs) [5, 7] to provide data-driven personalized education. To deal
with a question that requires multiple skills, the models studied so far are orga-
nized into four categories: the variables for latent skill states are represented as
binary or continuous vectors and the emission model is compensatory or non-
compensatory [9], which means that each skill can complement other skills or
not. Figure 1 shows the four categories.

The model using continuous skill states and non-compensatory emissions has
the potential to accurately predict whether learners can answer questions and
explain which skill they are missing when they cannot answer the questions. The
assumptions of this model reflect situations in which correct or incorrect answers
are emitted more realistically than other models. A person’s skill states are con-
sidered to be continuous rather than binary; questions can require the same skill
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Fig. 1: Four categories of state space models for inferring changes of latent skills.
The left panel shows a graphical model for these models. The right panel shows

the four categories: the skill state variable z
(t)
j for learner j at time t is binary or

continuous vector. The emission model is compensatory or non-compensatory.
Our proposed model is shown in the lower right.

but different levels of mastery. The emission mechanism is non-compensatory
rather than compensatory. For example, if we want to solve an equation such as
1/5x+ 3/10 = 2x, we need both fraction and equation skills. The fraction skill
cannot complement the equation skill, and vice versa. The non-compensatory
model can benefit learners by clearly explaining which skill they are missing
when they cannot answer a question. However, the model in this category has
not been explored yet.

To explore this potential, we propose a statistical model that combines a lin-
ear dynamical system with the non-compensatory model. Since this introduces
non-conjugacy and makes it hard to obtain the exact posterior of the skill states,
we propose an approximation using a local variational method [3]. In our experi-
ments, we show that our variational posterior adequately approximates the true
posterior using artificial data, and also our model outperforms two popular deep
learning-based methods in prediction using open datasets.

2 Non-compensatory Knowledge Tracing

Non-compensatory KT is an extension of the linear dynamical system (LDS) [4]
whose emission probability is the non-compensatory model in multidimensional
item response theory (MIRT) [9]. Since this introduces the non-conjugacy of the
non-compensatory emission and a Gaussian prior, it is hard to obtain the exact
posterior analytically. We approximate non-compensatory emission as Gaussian
so that we can simply treat our model same as the LDS.

2.1 Generative Model

Our target data {(i(t)j , y
(t)
j )}j=1,...,N, t=1,...,Tj

are sequential observations of an-

swers to questions by different learners over time. i
(t)
j ∈ {1, ...,M} denotes the in-

dex of the question answered by learner j ∈ {1, ..., N} at time step t ∈ {1, ..., Tj},
also denoted by i(j, t), and we abbreviate it to i when it is clear from the context.
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y
(t)
j ∈ {0, 1} represents whether learner j answered question i(j, t) correctly or

not at time step t.
The generative model of non-compensatory KT is defined like the LDS, ex-

cept that the emission probability is the non-compensatory item response model:

p(z
(1)
j ) = N (z

(1)
j |µ0, P0), (1)

p(z
(t+1)
j |z(t)

j ) = N

z(t+1)
j

∣∣∣∣∣∣∣∣Di(j,t)z
(t)
j +


...

βTk x
(t+1)
j,k
...

 , Γi(j,t+1)

 , (2)

p(y
(t)
j = 1|z(t)

j ) =
∏
k

σ
(
ai,k(z

(t)
j,k − bi,k)

)Qi,k

. (3)

z
(t)
j denotes the latent skill state of learner j at time step t. z

(t)
j is a K di-

mensional vector and z
(t)
j,k denotes the state of k-th skill. Initially, the state of a

learner is drawn from the Gaussian (1) with the mean µ0 and covariance P0. It
then transits by a linear transformation (2) by Di and βk with Gaussian noise
with zero mean and covariance Γi(j,t+1); Di is diagonal and (Di)k,k = 1 when
k is not required from question i. xj,k ∈ RFk is any Fk dimensional covariate.
Covariance Γi is also diagonal and (Γi)k,k = γk if question i requires skill k, oth-
erwise (Γi)k,k= 0. The response of a learner to question i is drawn from the item
response model (3): ai,k and bi,k denote item discrimination and item difficulty,
respectively. Qi,k ∈ {0, 1} denotes question-skill mapping, whether question j
requires skill k or not, and we assume that the Q matrix is given in advance.

2.2 Posterior Inference and Parameter Estimation

The posterior inference and parameter estimation of the LDS can be processed
through a forward-backward algorithm and an EM algorithm [2], respectively. By
approximating emission probability as Gaussian, which is described in Section
2.3, we fully utilize this framework. A forward α̂ message can be obtained using
the Bayesian update:

α̂(z
(t)
j ) ∝ p(y(t)

j |z
(t)
j )p(z

(t)
j |y

(1)
j , . . . ,y

(t−1)
j ). (4)

Since the likelihood is approximated as Gaussian and the prior is also Gaussian,
we can analytically calculate α̂ as Gaussian. Once we get the forward message
as Gaussian, the backward message can be obtained as Gaussian in the same
way as the LDS. In the parameter estimation, we employ Monte Carlo EM [10].
We omit the detail of EM algorithm and focus on the Gaussian approximation
of the likelihood instead.

2.3 Local Gaussian Approximation

This section describes a local Gaussian approximation to the likelihood function
in (4). Our approximation is based on a method in [3]; therefore we approxi-
mate it by finding a variational lower bound of the likelihood in an exponential
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Fig. 2: Rough sketch of the Gaussian approximation.

quadratic form. Since the likelihood function for correct answers, p(y
(t)
j = 1|z(t)

j ),
is a product of sigmoid functions, applying the method in [3] for each sigmoid
function yields a Gaussian approximation. Here, we focus on the approximation
for incorrect answers. In this section, we consider the case where learner j an-
swers question i at time step t. For simplicity, we omit j, t and slightly abuse the
notation z,ai, bi to limit the dimensions to the skills required for question i.

The approximation of the likelihood for incorrect answers consists of two
steps as shown in Figure 2. We just describe rough sketch of the derivation
and the derived results due to the limitation of pages. In the first step, we
take the gradient of the likelihood at the mean of the prior and convert the
likelihood into a one-dimensional function along the gradient direction. Applying
the complement rule, the lower bound of sigmoid function [3], and Jensen’s
inequality yields a variational lower bound in an exponential quadratic form.
In the second step, we extend this lower bound to Ki dimensions, where Ki is
the number of skill required to question i. The variance in the direction that is
orthogonal to the s1 axis is copied from the prior.

The derived Gaussian approximation is N (z|η, Ψ):

η = W

 ∑2Ki−2
l=0 qlBl

2
∑2Ki−2

l=0 qlAl

WTm

 , Ψ−1 = W

[
2
(∑2Ki−2

l=0 qlAl

)
0

0 Λ\s1

]
WT .

The prior in (4), p(z
(t)
j |y

(1)
j , . . . ,y

(t−1)
j ), is assumed to be N (z|m, G). Each

column of matrix W forms an orthonormal basis, the direction of the first column
vector is the gradient ∇p(y = 0|z)|m, the directions of other column vectors can
be any directions as far as the orthonormal property holds, and WT is a matrix
where the first row of WT is removed. Other definitions are the followings:

Λ = WTG−1W, Λ\s1 = Λ2:Ki,2:Ki
− Λ2:Ki,1Λ

−1
1,1Λ1,2:Ki

,

ql ∝

[
Ki∏
k=1

σ(ξl,k)

]
exp(−Alξ2 +Blξ + Cl),

2Ki−2∑
l=0

ql = 1,

Al =

Ki∑
k=1

λ(ξl,k)ã2
l,i,k, Bl =

Ki∑
k=1

2λ(ξl,k)ãl,i,k b̃l,i,k +
1

2
ãl,i,k,

Cl =

Ki∑
k=1

λ(ξl,k)(ξ2
l,k − b̃2l,i,k)− 1

2
(ξl,k + b̃l,i,k),
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(a) (b) (c)

Fig. 3: Comparison between the true posterior and the approximated posterior.

ãl,i,k = sgn(l, k)ai,kwk,1, b̃l,i,k = −sgn(l, k)ai,k(wk,2:W
Tm− bi,k),

ξl,k = ãl,i,kξ − b̃l,i,k,
λ(ξ) = 1

2ξ (σ(ξ)− 1
2 ),

sgn(l, k) =

{
1 if l mod 2k 6= l mod 2k−1

−1 otherwise
.

ξ is a variational parameter. It can be optimized by maximizing lower bound of
marginal likelihood.

3 Experiments

We show some visualizations of our approximation of α̂ messages to see how it
works, and results of prediction performance on the Assistments datasets [1].

Three examples of approximating α̂ messages are shown in Figure 3. Given
a Gaussian prior (green on the upper panel) and a non-compensatory emission
likelihood (red on the upper panel), we display the approximated likelihood (blue
on the upper panel), the approximated posterior (blue on the lower panel), and
true posterior (red on the lower panel) in three cases (a)-(c). The likelihood
functions are p(y = 0|z) = 1− σ(z1 − 3.0)σ(z2 − 5.0) in all cases and the priors
are set at different locations and with different rotations. From the upper panels,
we can see that the likelihood is differently and locally approximated depending
on the location and shape of prior. From the lower panels, we can see that our
posteriors adequately approximate the true posteriors.

The results of prediction performance on the Assistments 2009-2010 “skill
builder” and “non-skill builder” datasets [1] are shown in Table 1. We compared
our method with the state-of-the-art deep learning based methods: DKT [8]
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Table 1: Prediction scores on Assistments dataset.

Skill Builder Non Skill Builder
Method F1 AUC F1 AUC

Proposed 0.565± 0.009 0.764± 0.005 0.612± 0.004 0.798± 0.005

DKT 0.525 ± 0.009 0.756 ± 0.006 0.585 ± 0.005 0.779 ± 0.005
DKVMN 0.521 ± 0.024 0.755 ± 0.007 0.604 ± 0.018 0.785 ± 0.007

and DKVMN [12]. In DKT and DKVMN, we created joint skills for questions
requiring multiple skills to prevent a leakage problem reported in [11]. We used
5-fold cross-validation and evaluated AUC and F1 score for predicting incorrect
answers. We can see our method outperforms DKT and DKVMN.

4 Conclusion

In this paper, we proposed a state space model for knowledge tracing which
combines the LDS with the non-compensatory model in MIRT. Introducing the
non-compensatory emission precludes from inferring the exact posterior of the
latent skill states. We derived Gaussian approximation of the posterior using
local variational methods. In the experiments, we showed that our variational
posterior adequately approximates the true posterior using artificial data, and
also our model achieves better prediction accuracy compared to two popular
deep learning-based methods using open datasets.
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