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Applications: Language learning 
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• Over 300+ million students
• Based on spaced repetition of flash cards 
• Can we compute optimal personalized schedule of repetition? 



Teaching Interaction Using Flashcards
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Interaction at time 𝒕 = 𝟏, 𝟐, …𝑻

1. Teacher displays a flashcard 𝑥𝑡 ∈ {1,2, . . , 𝑛}

2. Learner’s recall is 𝑦𝑡 ∈ 0, 1

3. Teacher provides the correct answer
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Background on Teaching Policies
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Example setup
- 𝑇 = 20 and 𝑛 = 5 concepts given by 𝑎, 𝑏, 𝑐, 𝑑, 𝑒

Naïve teaching policies

• Random:

• Round-robin: 𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑒 → 𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑒 → 𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑒 → 𝑎 →

𝑎 → 𝑏 → 𝑎 → 𝑒 → 𝑐 → 𝑑 → 𝑎 → 𝑑 → 𝑐 → 𝑎 → 𝑏 → 𝑒 → 𝑎 → 𝑏 → 𝑑 → 𝑒 →

Key limitation: Schedule agnostic to learning process



Background: Pimsieur Method (1967)
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Used in mainstream language learning platforms

Based on spaced repetition ideas

𝑎 → 𝑏 → 𝑎 → 𝑏 → 𝑐 → 𝑎 → 𝑐 → 𝑏 → 𝑑 → 𝑐 → 𝑑 → 𝑎 → 𝑏 → 𝑑 → 𝑐 → 𝑒 →𝑎 → 𝑏 → 𝑎 → 𝑏 → 𝑐 → 𝑎 → 𝑐 → 𝑏 → 𝑑 → 𝑐 → 𝑑 → 𝑎 → 𝑏 → 𝑑 → 𝑐 → 𝑒 →



Background: Leitner System (1972)
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Adaptive spacing intervals

𝑎 → 𝑏 → 𝑎 → 𝑏 → 𝑐 → 𝑎 → 𝑐 → 𝑏 → 𝑑 → 𝑐 → 𝑑 → 𝑎 → 𝑏 → 𝑑 → 𝑐 → 𝑒 →Student 1:

𝑎 → 𝑎 → 𝑏 → 𝑎 → 𝑏 → 𝑐 → 𝑎 → 𝑐 → 𝑎 → 𝑏 → 𝑐 → 𝑎 → 𝑏 → 𝑎 → 𝑑 → 𝑐 →Student 2:

Key limitation: No guarantees on 
the optimality of the schedule



Modeling Forgetfulness

pi(t | history) = 2�
�ti
hi

Recall Probability
of Concept i:

Time t
Time since last teaching concept

Half-life estimate
(depends on feedback)

hi += ai

hi += bi

hi += ai

hi += bi

Half-life Regression (HRL) model [Settles & Meeder, ACL 2016]



Interactive Teaching Protocol

• For t = 1…T
- Teacher chooses concept 𝑖𝜖 1, … ,𝑚 (e.g., a flashcard)
- Learner tries to recall concept (success or fail)
- Teacher reveals answer (e.g., “Spielzug”)

• Goal: maximize Spielzeug Nachtisch Buch Nachtisch Nachtisch Spielzeug 

𝑓 history =
1
𝑚
1
𝑇
B
"#$

%
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&#$
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𝑝𝑖 𝑡 | history$:&)$

“Area Under Curve”



Naive Approaches

• Round Robin
- Doesn’t adapt to new estimates of learner recall probabilities
- Over-teaches easy concepts
- Under-teaches hard concepts

• Lowest Recall Probability
- Generalization of Pimsleur method and Leitner system
- Doesn’t consider change to recall probability



Greedy Teaching Algorithm (interactive)

• Choose concept i to maximize

Δ 𝑖 history = 𝐸*! 𝑓 history⨁ 𝑖, 𝑦& − 𝑓(history)

yt: success or failure of recall at time t

pi(t | history) = 2�
�ti
hi

(randomness over model estimate)

(hi updated after observing yt)



Characteristics of the Optimization Problem
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• Non-submodular
- Gain of a concept 𝑥 can increase given longer history
- Captured by submodularity ratio 𝛾 over sequences



Characteristics of the Optimization Problem (cont.)
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• Post-fix non-monotone
- 𝑓 orange⨁ blue < 𝑓 blue
- Captured by curvature ω



Theoretical Guarantees: General Case
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• Guarantees for the general case (any memory model)

• Utility of 𝜋gr (greedy policy) compared to 𝜋opt is given by

Theorem 1 Corollary 2

𝐹 𝜋!" ≥ 𝐹 𝜋#$% 0
&'(

)
𝛾)*&
𝑇

2
+',

&*(

1 −
𝜔+ 5 𝛾+
𝑇

≥ 𝐹 𝜋#$%
1

𝜔-./
1 − 𝑒*0!"# 1 2!$%



Theoretical Guarantees: HLR Model
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• Consider the task of teaching 𝑛 concepts where each concept is 
following an independent HLR model with the same parameters 
𝑎0 = 𝑧, 𝑏0 = 𝑧 ∀ 𝑥 ∈ {1,2, . . , 𝑛}.  A sufficient condition for the 

algorithm to achieve (1 − 𝜖) high utility is 

z ≥ max {log 𝑇, log 3𝑛 , log 12"

3'
}



Illustration: Simulation ResultsSimulation Results

Greedy Round
Robin

Optimal

D Teaching Algorithm and Analysis

D.1 Analysis for HLR memory model

(a) Greedy (b) Optimal (c) Round Robin (d) Objective

(e) Marginal gain (f) �g
t (g) !g

t (h) Empirical bounds

Figure 8: Performance analysis for the greedy algorithm when teaching an HLR learner with T = 15 and n = 3.
Each colored marker from Fig. 8a–8c represents a different concept, with ✓1 = (2.50, 2.50, 1.26) for blue,
(✓2 = 1.00, 1.00,�1.00) for orange, and ✓3 = (0.08, 0.08,�0.88) for the green concept. Intuitively, concepts
with higher ✓i values are easier to teach.

In Fig. 8, we demonstrate the behavior of three teaching algorithms on a toy problem with T =
15, n = 3. Fig. 8a-8c show the learner’s forgetting curve (i.e., recall probabilities) and the sequences
selected by three algorithms: Greedy (Algorithm 1), Optimal (the optimal solution for Problem (3)),
and Round Robin (a fixed round robin teaching schedule for all concepts). Observe that Greedy starts
with easy concepts (i.e., concepts with higher memory retention rates), moves on to teaching new
concepts when the learner has “enough” retention for the current concept, and repeats previously
shown concepts towards the end of the teaching session. This behavior is similar to the optimal
teaching sequence, and achieves higher utility in comparison to the fixed round robin scheduling
(Fig. 8d).

In Fig. 8e, we see that the marginal gain of the orange item is increasing in the early stages (as opposed
to many classical discrete optimization problems that exhibit the diminishing returns property), which
makes the analysis of the greedy algorithm non-trivial. In Fig. 8f and Fig. 8g, we show the empirical
bounds on �g

t ,!
g
t , as well as the exact values of �g

t ,!
g
t when running the greedy algorithm. Note that

our procedure for computing �g
t actually outputs the exact value of �g

t (a näive approach to computing
�g
t is via extensive enumeration of all possible teaching sequences).

In Fig. 8h, we plug in the empirical bounds on �g
t and !g

t to Theorem 2 and Corollary 3, and plot
the empirical approximation bounds on F (⇡g) /F (⇡⇤) as a function of the teaching horizon T . For
problem instances with a large teaching horizon T , it is infeasible to compute the true approximation
bound. However, one can still efficiently compute the empirical approximation bound as a useful
indicator of the performance of our algorithm.

E Proofs

E.1 Proof of Theorem 1

In this section, we provide the proof of Theorem 1. We first show that any non-negative string
submodular function can be represented as a constant factor of the objective function f as defined in
Eq. (4). We then prove the NP-hardness of the optimization problem (Problem (3)) by the NP-hardness
result of string submodular optimization [43].

Proof. Recall from Eq. (4) that

f(�1:t, y1:t) =
1

nT

nX

i=1

TX

⌧=1

gi
�
⌧ + 1,

�
�1:min(⌧,t), y1:min(⌧,t)

��
.
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User Study 150 participants from Mechanical Turk platform

T=40, m=15, total study time is about 25 mins
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German
GR LR RR RD

Avg. gain 0.572 0.487 0.462 0.467

p-value - 0.0652 0.0197 0.0151

C.3 Datasets

In this subsection, we show a few samples from both the German dataset (for the German vocabulary
teaching app) in Fig. 6, and the Biodiversity dataset (for the biodiversity teaching app) in Fig. 7.

German dataset

Figure 6: Samples from the German dataset

Biodiversity dataset

(a) Common: Owl, Cat, Horse, Elephant, Lion, Tiger, Bear

(b) Rare: Angwantibo, Olinguito, Axolotl, Ptarmigan, Patrijshond, Coelacanth, Pyrrhuloxia
Figure 7: Samples from the Biodiversity dataset

14
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Biodiversity 
(all species)

Biodiversity 
(rare species)

GR LR RR RD
Avg. gain 0.475 0.411 0.390 0.251

p-value - 0.0017 0.0001 0.0001

GR LR RR RD
Avg. gain 0.766 0.668 0.601 0.396

p-value - 0.0001 0.0001 0.0001

C.3 Datasets
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(b) Rare: Angwantibo, Olinguito, Axolotl, Ptarmigan, Patrijshond, Coelacanth, Pyrrhuloxia
Figure 7: Samples from the Biodiversity dataset

14



Summary: Teaching Concepts to People

19

• Teaching forgetful learners
- Limited memory (modeling forgetfulness)
- Engagement (interface design)

• Challenges not covered in this talk:
- Limited inference power and noise
- Mismatch in representation
- Interpretability (e.g., teaching via labels vs. rich feedback) 
- Safety (e.g., when teaching physical tasks)
- Fairness (e.g., when teaching a class) 
- …

Questions?


