

Teaching Multiple Concepts to Forgetful Learners

Yuxin Chen chenyuxin@uchicago.edu

Anette Hunziker

Yuxin Chen Oisin Mac Aodha

Andreas Krause

Pietro Perona

Yisong Yue

Adish Singla

Applications: Language learning

- Over 300+ million students
- Based on **spaced repetition** of flash cards
- Can we compute **optimal personalized schedule** of repetition?

Teaching Interaction Using Flashcards

Interaction at time t = 1, 2, ... T

- **1.** Teacher displays a flashcard $x_t \in \{1, 2, ..., n\}$
- 2. Learner's recall is $y_t \in \{0, 1\}$
- 3. Teacher provides the correct answer

toy

Learning Phase (1)	Learning Phase (2)	Learning Phase (3)	Learning Phase (4)	Learning Phase (5)	Learning Phase (6)	3	Answei	: Spielze	eug
								x jou	et
toy	toy	dessert	DOOK	dessert	dessert				
Answer: Spielzeug	Answer: Spielzeug	Answer: Nachtisch	Answer: Buch	Answer: Nachtisch	Answer: Nachtisch			ta	Culture
x jouet	✓ Spielzeug	x	✓ Buch	x nachs	✓ Nachtisch	2		jouet	Subr
jouet Submit	Spielzeug Submit	Submit	Buch Submit	nachs Submit	Nachtisch Submit				

Background on Teaching Policies

Example setup

- T = 20 and n = 5 concepts given by $\{a, b, c, d, e\}$

Naïve teaching policies

Key limitation: Schedule agnostic to learning process

Background: Pimsieur Method (1967)

Used in mainstream language learning platforms

Based on spaced repetition ideas

Background: Leitner System (1972)

Modeling Forgetfulness

Half-life Regression (HRL) model [Settles & Meeder, ACL 2016]

Interactive Teaching Protocol

• For t = 1....T

- Teacher chooses concept $i \in \{1, ..., m\}$ (e.g., a flashcard)
- Learner tries to recall concept (success or fail)
- Teacher reveals answer (e.g., "Spielzug")

toy

20

• Goal: maximize

$$f(\text{history}) = \frac{1}{m} \frac{1}{T} \sum_{i=1}^{m} \sum_{t=1}^{T} p_i(t \mid \text{history}_{1:t-1})$$

Naive Approaches

• Round Robin

- Doesn't adapt to new estimates of learner recall probabilities
- Over-teaches easy concepts
- Under-teaches hard concepts

• Lowest Recall Probability

- Generalization of Pimsleur method and Leitner system
- Doesn't consider change to recall probability

Greedy Teaching Algorithm (interactive)

• Choose concept i to maximize

$$\Delta(i|\text{history}) = E_{y_t}[f(\text{history}\oplus(i, y_t)) - f(\text{history})]$$

 y_t : success or failure of recall at time t (randomness over model estimate)

$$p_i(t \mid \text{history}) = 2^{-\frac{\Delta t_i}{h_i}}$$

(h_i updated after observing y_t)

Characteristics of the Optimization Problem

- Non-submodular
 - Gain of a concept x can increase given longer history
 - Captured by submodularity ratio γ over sequences

Characteristics of the Optimization Problem (cont.)

- Post-fix non-monotone
 - $f(\text{orange} \oplus \text{blue}) < f(\text{blue})$
 - Captured by curvature $\boldsymbol{\omega}$

Theoretical Guarantees: General Case

- Guarantees for the general case (any memory model)
- Utility of $\pi^{\rm gr}$ (greedy policy) compared to $\pi^{\rm opt}$ is given by

$$F(\pi^{\text{gr}}) \ge F(\pi^{\text{opt}}) \sum_{t=1}^{T} \left(\frac{\gamma_{T-t}}{T} \prod_{\tau=0}^{t-1} \left(1 - \frac{\omega_{\tau} \cdot \gamma_{\tau}}{T} \right) \right) \ge F(\pi^{\text{opt}}) \frac{1}{\omega_{\text{max}}} (1 - e^{-\omega_{\text{max}} \cdot \gamma_{\text{min}}})$$

Theorem 1 Corollary 2

Theoretical Guarantees: HLR Model

• Consider the task of teaching *n* concepts where each concept is following an independent **HLR model** with the same parameters $(a^x = z, b^x = z) \forall x \in \{1, 2, ..., n\}$. A sufficient condition for the algorithm to achieve $(1 - \epsilon)$ high utility is

$$z \ge \max \{\log T, \log(3n), \log\left(\frac{2n^2}{\epsilon T}\right)\}$$

Illustration: Simulation Results

User Study

150 participants from Mechanical Turk platform T=40, m=15, total study time is about 25 mins

apple

cold

helicopter

salt

soup

sun

country

tea

dessert

toy

garden

vacuum cleaner

weekend

German

	GR	LR	RR	RD
Avg. gain	0.572	0.487	0.462	0.467
p-value	-	0.0652	0.0197	0.0151

blue

example

gloves

red

17

(a) Common: Owl, Cat, Horse, Elephant, Lion, Tiger, Bear

(b) Rare: Angwantibo, Olinguito, Axolotl, Ptarmigan, Patrijshond, Coelacanth, Pyrrhuloxia

		GR	LR	RR	RD
Biodiversity	Avg. gain	0.475	0.411	0.390	0.251
(all species)	p-value	-	0.0017	0.0001	0.0001

		GR	LR	RR
Biodiversity	Avg. gain	0.766	0.668	0.601
(rare species)	p-value	-	0.0001	0.0001

18

RD

0.396

0.0001

Summary: Teaching Concepts to People

• Teaching forgetful learners

- Limited memory (modeling forgetfulness)
- Engagement (interface design)

• Challenges not covered in this talk:

- Limited inference power and noise
- Mismatch in representation
- Interpretability (e.g., teaching via labels vs. rich feedback)
- Safety (e.g., when teaching physical tasks)
- Fairness (e.g., when teaching a class)

- ...

Questions?